1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
#include "rebatching_queue.h"
#include "caffe2/utils/smart_tensor_printer.h"
namespace caffe2 {
namespace {
// This concat function will always create a new first dimension to concat
void concat(
CPUContext& context,
const std::vector<std::vector<TensorCPU>>& inputs,
const std::vector<TensorCPU*>& outputs) {
CAFFE_ENFORCE(!inputs.empty());
const auto& inputZero = inputs[0];
const auto numTensors = inputZero.size();
const auto numRows = inputs.size();
// Precompute the output sizes to avoid resizing
std::vector<std::vector<int64_t>> outputDims(numTensors);
for (size_t i = 0; i < numTensors; ++i) {
SmartTensorPrinter::PrintTensor(inputZero.at(i));
outputDims[i] = inputZero.at(i).sizes().vec();
outputDims[i].insert(outputDims[i].begin(), numRows);
}
// Resize to the final output size
std::vector<void*> destinations(numTensors);
for (size_t i = 0; i < numTensors; ++i) {
outputs[i]->Resize(outputDims[i]);
destinations[i] = outputs[i]->raw_mutable_data(inputZero[i].meta());
}
for (size_t i = 0; i < numRows; ++i) {
CAFFE_ENFORCE_EQ(inputs[i].size(), numTensors);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int j = 0; j < numTensors; ++j) {
const auto& input = inputs[i][j];
CAFFE_ENFORCE(inputZero[j].meta() == input.dtype());
CAFFE_ENFORCE_EQ(inputZero[j].itemsize(), input.itemsize());
CAFFE_ENFORCE_EQ(inputZero[j].ndim(), input.dim());
for (int k = 0; k < input.dim(); ++k) {
CAFFE_ENFORCE_EQ(input.sizes()[k], inputZero[j].size(k));
}
// Skip empty tensors
if (input.numel() == 0) {
continue;
}
context.CopyItemsToCPU(
input.dtype(),
input.numel(),
input.raw_data() /* src */,
destinations[j] /* dst */
);
destinations[j] =
(char*)destinations[j] + input.numel() * input.itemsize();
}
}
}
std::vector<std::vector<TensorCPU>> split(
CPUContext& context,
const std::vector<const TensorCPU*>& inputs) {
CAFFE_ENFORCE(!inputs.empty());
const auto outputSize = inputs[0]->sizes().at(0);
std::vector<std::vector<TensorCPU>> outputs(outputSize);
for (const auto* inputPtr : inputs) {
CAFFE_ENFORCE(inputPtr);
const auto& input = *inputPtr;
const auto innerSize = input.size_from_dim(1);
const auto itemSize = input.dtype().itemsize();
auto outputDims = input.sizes().vec();
CAFFE_ENFORCE(!outputDims.empty());
outputDims.erase(outputDims.begin());
CAFFE_ENFORCE_EQ(input.sizes().at(0), outputSize);
for (int i = 0; i < outputSize; ++i) {
outputs[i].push_back(Tensor(outputDims, CPU));
context.CopyItemsToCPU(
input.dtype(),
innerSize,
(char*)input.raw_data() + i * innerSize * itemSize /* src */,
outputs[i].back().raw_mutable_data(input.dtype()) /* dst */);
}
}
return outputs;
}
} // anonymous namespace
RebatchingQueue::RebatchingQueue(size_t capacity, size_t numBlobs)
: capacity_(capacity), numBlobs_(numBlobs), queue_(capacity) {}
RebatchingQueue::~RebatchingQueue() {
close();
}
bool RebatchingQueue::canRead() const {
return tail_ < head_;
}
bool RebatchingQueue::dequeue(
CPUContext& context,
size_t numElements,
const std::vector<TensorCPU*>& outputs) {
std::vector<std::vector<TensorCPU>> results;
results.reserve(numElements);
for (;;) {
if (results.size() == numElements) {
break;
}
{
std::unique_lock<std::mutex> lock(mutex_);
cvEmpty_.wait(lock, [this] { return canRead() || isClosed_; });
// We only want to stop reading if the queue is empty and closed
if (!canRead() && isClosed_) {
break;
}
do {
results.push_back(std::move(queue_[tail_++ % capacity()]));
} while (canRead() && results.size() < numElements);
}
if (numElements == 1) {
cvOverflow_.notify_one();
} else {
cvOverflow_.notify_all();
}
}
if (results.empty()) {
return false;
}
concat(context, results, outputs);
return true;
}
bool RebatchingQueue::canWrite() const {
return tail_ + capacity() > head_;
}
bool RebatchingQueue::enqueueOne(
CPUContext& /*context*/,
const std::vector<const TensorCPU*>& inputs) {
std::vector<std::vector<TensorCPU>> splittedInputs;
splittedInputs.emplace_back();
auto& tensorVector = splittedInputs.back();
tensorVector.reserve(inputs.size());
for (const auto* tensorPtr : inputs) {
tensorVector.push_back(tensorPtr->Clone());
}
return enqueue(std::move(splittedInputs));
}
bool RebatchingQueue::enqueueMany(
CPUContext& context,
const std::vector<const TensorCPU*>& inputs) {
CAFFE_ENFORCE_EQ(numBlobs_, inputs.size());
std::vector<std::vector<TensorCPU>> splittedInputs;
splittedInputs = split(context, inputs);
return enqueue(std::move(splittedInputs));
}
bool RebatchingQueue::enqueue(
std::vector<std::vector<TensorCPU>> splittedInputs) {
int idx = 0;
for (;;) {
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (idx >= splittedInputs.size()) {
break;
}
{
std::unique_lock<std::mutex> lock(mutex_);
cvOverflow_.wait(lock, [this] { return canWrite() || isClosed_; });
if (isClosed_) {
// If we are here it means that we didn't apply the entire batch and if
// we get closed in the middle of enquing we treat it as a non-success.
return false;
}
do {
queue_[head_++ % capacity()] = std::move(splittedInputs[idx++]);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
} while (canWrite() && idx < splittedInputs.size());
}
cvEmpty_.notify_all();
}
return true;
}
size_t RebatchingQueue::capacity() const {
return capacity_;
}
size_t RebatchingQueue::numBlobs() const {
return numBlobs_;
}
bool RebatchingQueue::isClosed() const {
std::lock_guard<std::mutex> g(mutex_);
return isClosed_;
}
void RebatchingQueue::close() {
{
std::lock_guard<std::mutex> g(mutex_);
isClosed_ = true;
}
cvEmpty_.notify_all();
cvOverflow_.notify_all();
}
} // namespace caffe2
|