File: rebatching_queue.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (237 lines) | stat: -rw-r--r-- 6,194 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include "rebatching_queue.h"
#include "caffe2/utils/smart_tensor_printer.h"

namespace caffe2 {

namespace {

// This concat function will always create a new first dimension to concat
void concat(
    CPUContext& context,
    const std::vector<std::vector<TensorCPU>>& inputs,
    const std::vector<TensorCPU*>& outputs) {
  CAFFE_ENFORCE(!inputs.empty());

  const auto& inputZero = inputs[0];
  const auto numTensors = inputZero.size();
  const auto numRows = inputs.size();

  // Precompute the output sizes to avoid resizing
  std::vector<std::vector<int64_t>> outputDims(numTensors);

  for (size_t i = 0; i < numTensors; ++i) {
    SmartTensorPrinter::PrintTensor(inputZero.at(i));
    outputDims[i] = inputZero.at(i).sizes().vec();
    outputDims[i].insert(outputDims[i].begin(), numRows);
  }

  // Resize to the final output size
  std::vector<void*> destinations(numTensors);
  for (size_t i = 0; i < numTensors; ++i) {
    outputs[i]->Resize(outputDims[i]);
    destinations[i] = outputs[i]->raw_mutable_data(inputZero[i].meta());
  }

  for (size_t i = 0; i < numRows; ++i) {
    CAFFE_ENFORCE_EQ(inputs[i].size(), numTensors);

    // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
    for (int j = 0; j < numTensors; ++j) {
      const auto& input = inputs[i][j];

      CAFFE_ENFORCE(inputZero[j].meta() == input.dtype());
      CAFFE_ENFORCE_EQ(inputZero[j].itemsize(), input.itemsize());
      CAFFE_ENFORCE_EQ(inputZero[j].ndim(), input.dim());
      for (int k = 0; k < input.dim(); ++k) {
        CAFFE_ENFORCE_EQ(input.sizes()[k], inputZero[j].size(k));
      }

      // Skip empty tensors
      if (input.numel() == 0) {
        continue;
      }

      context.CopyItemsToCPU(
          input.dtype(),
          input.numel(),
          input.raw_data() /* src */,
          destinations[j] /* dst */
      );

      destinations[j] =
          (char*)destinations[j] + input.numel() * input.itemsize();
    }
  }
}

std::vector<std::vector<TensorCPU>> split(
    CPUContext& context,
    const std::vector<const TensorCPU*>& inputs) {
  CAFFE_ENFORCE(!inputs.empty());

  const auto outputSize = inputs[0]->sizes().at(0);
  std::vector<std::vector<TensorCPU>> outputs(outputSize);

  for (const auto* inputPtr : inputs) {
    CAFFE_ENFORCE(inputPtr);

    const auto& input = *inputPtr;
    const auto innerSize = input.size_from_dim(1);
    const auto itemSize = input.dtype().itemsize();

    auto outputDims = input.sizes().vec();
    CAFFE_ENFORCE(!outputDims.empty());
    outputDims.erase(outputDims.begin());
    CAFFE_ENFORCE_EQ(input.sizes().at(0), outputSize);

    for (int i = 0; i < outputSize; ++i) {
      outputs[i].push_back(Tensor(outputDims, CPU));
      context.CopyItemsToCPU(
          input.dtype(),
          innerSize,
          (char*)input.raw_data() + i * innerSize * itemSize /* src */,
          outputs[i].back().raw_mutable_data(input.dtype()) /* dst */);
    }
  }

  return outputs;
}
} // anonymous namespace

RebatchingQueue::RebatchingQueue(size_t capacity, size_t numBlobs)
    : capacity_(capacity), numBlobs_(numBlobs), queue_(capacity) {}

RebatchingQueue::~RebatchingQueue() {
  close();
}

bool RebatchingQueue::canRead() const {
  return tail_ < head_;
}

bool RebatchingQueue::dequeue(
    CPUContext& context,
    size_t numElements,
    const std::vector<TensorCPU*>& outputs) {
  std::vector<std::vector<TensorCPU>> results;
  results.reserve(numElements);

  for (;;) {
    if (results.size() == numElements) {
      break;
    }

    {
      std::unique_lock<std::mutex> lock(mutex_);

      cvEmpty_.wait(lock, [this] { return canRead() || isClosed_; });

      // We only want to stop reading if the queue is empty and closed
      if (!canRead() && isClosed_) {
        break;
      }

      do {
        results.push_back(std::move(queue_[tail_++ % capacity()]));
      } while (canRead() && results.size() < numElements);
    }

    if (numElements == 1) {
      cvOverflow_.notify_one();
    } else {
      cvOverflow_.notify_all();
    }
  }

  if (results.empty()) {
    return false;
  }

  concat(context, results, outputs);

  return true;
}

bool RebatchingQueue::canWrite() const {
  return tail_ + capacity() > head_;
}

bool RebatchingQueue::enqueueOne(
    CPUContext& /*context*/,
    const std::vector<const TensorCPU*>& inputs) {
  std::vector<std::vector<TensorCPU>> splittedInputs;
  splittedInputs.emplace_back();
  auto& tensorVector = splittedInputs.back();
  tensorVector.reserve(inputs.size());
  for (const auto* tensorPtr : inputs) {
    tensorVector.push_back(tensorPtr->Clone());
  }

  return enqueue(std::move(splittedInputs));
}

bool RebatchingQueue::enqueueMany(
    CPUContext& context,
    const std::vector<const TensorCPU*>& inputs) {
  CAFFE_ENFORCE_EQ(numBlobs_, inputs.size());

  std::vector<std::vector<TensorCPU>> splittedInputs;
  splittedInputs = split(context, inputs);
  return enqueue(std::move(splittedInputs));
}

bool RebatchingQueue::enqueue(
    std::vector<std::vector<TensorCPU>> splittedInputs) {
  int idx = 0;
  for (;;) {
    // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
    if (idx >= splittedInputs.size()) {
      break;
    }

    {
      std::unique_lock<std::mutex> lock(mutex_);

      cvOverflow_.wait(lock, [this] { return canWrite() || isClosed_; });

      if (isClosed_) {
        // If we are here it means that we didn't apply the entire batch and if
        // we get closed in the middle of enquing we treat it as a non-success.
        return false;
      }

      do {
        queue_[head_++ % capacity()] = std::move(splittedInputs[idx++]);
        // NOLINTNEXTLINE(clang-diagnostic-sign-compare)
      } while (canWrite() && idx < splittedInputs.size());
    }

    cvEmpty_.notify_all();
  }

  return true;
}

size_t RebatchingQueue::capacity() const {
  return capacity_;
}

size_t RebatchingQueue::numBlobs() const {
  return numBlobs_;
}

bool RebatchingQueue::isClosed() const {
  std::lock_guard<std::mutex> g(mutex_);
  return isClosed_;
}

void RebatchingQueue::close() {
  {
    std::lock_guard<std::mutex> g(mutex_);
    isClosed_ = true;
  }

  cvEmpty_.notify_all();
  cvOverflow_.notify_all();
}
} // namespace caffe2