File: rebatching_queue.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (68 lines) | stat: -rw-r--r-- 1,392 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#pragma once

#include <atomic>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <queue>

#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/stats.h"
#include "caffe2/core/tensor.h"

namespace caffe2 {

// TODO: This is a very naive implementation with a single mutex. We can do the
// atomic index + circular queue optimizations or pull something more
// heavy-weight later

class RebatchingQueue {
 public:
  RebatchingQueue(size_t capacity, size_t numBlobs);

  ~RebatchingQueue();

  bool enqueueOne(
      CPUContext& context,
      const std::vector<const TensorCPU*>& inputs);

  bool enqueueMany(
      CPUContext& context,
      const std::vector<const TensorCPU*>& inputs);

  bool dequeue(
      CPUContext& context,
      size_t numElements,
      const std::vector<TensorCPU*>& outputs);

  size_t capacity() const;

  size_t numBlobs() const;

  bool isClosed() const;

  void close();

 private:
  bool enqueue(std::vector<std::vector<TensorCPU>> splittedInputs);

  bool canWrite() const;
  bool canRead() const;

  const size_t capacity_;
  const size_t numBlobs_;

  mutable std::mutex mutex_;

  bool isClosed_{false};

  uint64_t head_{0};
  uint64_t tail_{0};

  std::condition_variable cvEmpty_;
  std::condition_variable cvOverflow_;

  std::vector<std::vector<TensorCPU>> queue_;
};
} // namespace caffe2