1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/sgd/adadelta_op.h"
namespace caffe2 {
namespace {
__global__ void AdadeltaUpdateKernel(
int N,
const float* w,
const float* g,
const float* h,
const float* d,
const float epsilon,
const float decay,
const float* lr,
float* nw,
float* nh,
float* nd) {
CUDA_1D_KERNEL_LOOP(i, N) {
float gi = g[i];
float di = d[i];
float hi = nh[i] = decay * h[i] + (1.0f - decay) * gi * gi;
float ng = sqrtf(di + epsilon) * rsqrtf(hi + epsilon) * gi;
nw[i] = w[i] + lr[0] * ng;
nd[i] = decay * di + (1.0f - decay) * ng * ng;
}
}
template <>
void AdadeltaUpdate<CUDAContext>(
int N,
const float* w,
const float* g,
const float* h,
const float* d,
const float epsilon,
const float decay,
const float* lr,
float* nw,
float* nh,
float* nd,
CUDAContext* context) {
AdadeltaUpdateKernel<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, w, g, h, d, epsilon, decay, lr, nw, nh, nd);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
} // namespace
template <typename SIndex, typename THalf>
__global__ void SparseAdadeltaKernel(
const size_t N,
const size_t grad_slice_sz,
const float epsilon,
const float decay,
const SIndex* indices,
const float* grad,
const float* lr,
THalf* param,
THalf* param_mom,
THalf* param_mom_delta) {
const float LR = lr[0];
CUDA_1D_KERNEL_LOOP(i, N) {
const size_t gradIdx = i;
const SIndex index = indices[i / grad_slice_sz];
const size_t paramIdx = index * grad_slice_sz + (i % grad_slice_sz);
float mom_new = decay * param_mom[paramIdx] +
(1.0f - decay) * grad[gradIdx] * grad[gradIdx];
param_mom[paramIdx] = mom_new;
float grad_new = sqrtf(epsilon + param_mom_delta[paramIdx]) *
rsqrtf(mom_new + epsilon) * grad[gradIdx];
float param_new = LR * grad_new + param[paramIdx];
param[paramIdx] = param_new;
float mom_delta_new = decay * param_mom_delta[paramIdx] +
(1.0f - decay) * grad_new * grad_new;
param_mom_delta[paramIdx] = mom_delta_new;
}
}
template <class Context>
class CUDASparseAdadeltaOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
CUDASparseAdadeltaOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
OP_SINGLE_ARG(float, "epsilon", epsilon_, 1e-5f),
OP_SINGLE_ARG(float, "decay", decay_, 0.95f) {}
bool RunOnDevice() override {
// Enforce shapes
CAFFE_ENFORCE_EQ(Input(PARAM).size(), Input(MOMENT_GRAD).size());
CAFFE_ENFORCE_EQ(Input(PARAM).size(), Input(MOMENT_DELTA).size());
CAFFE_ENFORCE_EQ(Input(LR).size(), 1);
CAFFE_ENFORCE_EQ(
Input(PARAM).size_from_dim(1),
Input(GRAD).size_from_dim(Input(INDICES).ndim()));
// Enforce domain constraints on attributes
CAFFE_ENFORCE_GE(epsilon_, 0.0f);
CAFFE_ENFORCE_GT(decay_, 0.0f);
CAFFE_ENFORCE_LT(decay_, 1.0f);
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <typename IndexType>
bool DoRunWithType() {
auto n = Input(INDICES).size();
if (n == 0) {
return true;
}
return DispatchHelper<TensorTypes2<float, at::Half>, IndexType>::call(
this, Input(PARAM));
}
template <typename IndexType, typename THalf>
bool DoRunWithType2() {
const auto* lr = Input(LR).template data<float>();
const auto* indices = Input(INDICES).template data<IndexType>();
const auto* gradIn = Input(GRAD).template data<float>();
const auto* paramIn = Input(PARAM).template data<THalf>();
const auto* momentIn = Input(MOMENT_GRAD).template data<THalf>();
const auto* momentDeltaIn = Input(MOMENT_DELTA).template data<THalf>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<THalf>();
auto* momentOut =
Output(OUTPUT_MOMENT_GRAD)->template mutable_data<THalf>();
auto* momentDeltaOut =
Output(OUTPUT_MOMENT_DELTA)->template mutable_data<THalf>();
auto N = Input(GRAD).size();
auto grad_slice_sz = Input(GRAD).size_from_dim(Input(INDICES).ndim());
if (N == 0) {
// empty grad, nothing to do here, not even launching the kernel
return true;
}
SparseAdadeltaKernel<IndexType, THalf>
<<<CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N,
grad_slice_sz,
epsilon_,
decay_,
indices,
gradIn,
lr,
paramOut,
momentOut,
momentDeltaOut);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
protected:
const float epsilon_;
const float decay_;
INPUT_TAGS(PARAM, MOMENT_GRAD, MOMENT_DELTA, INDICES, GRAD, LR);
OUTPUT_TAGS(OUTPUT_PARAM, OUTPUT_MOMENT_GRAD, OUTPUT_MOMENT_DELTA);
};
REGISTER_CUDA_OPERATOR(Adadelta, AdadeltaOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(SparseAdadelta, CUDASparseAdadeltaOp<CUDAContext>);
} // namespace caffe2
|