File: adagrad_fused_op_gpu.cuh

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (255 lines) | stat: -rw-r--r-- 8,605 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#pragma once

#include <cub/block/block_reduce.cuh>
#include <cub/device/device_reduce.cuh>
#include <cub/device/device_scan.cuh>
#include <curand_kernel.h>

#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/GpuAtomics.cuh"

#if defined(USE_ROCM)
#define SEGREDUCE_MINBLOCKS 8
#else
#define SEGREDUCE_MINBLOCKS 16
#endif

// Whoever include this header should define REDUCE_BLOCK_SIZE
// which is the maximum row-wise length
// Default is 1024 (maxThreads per block in Volta GPU)
#ifdef REDUCE_BLOCK_SIZE
#define REDUCE_SIZE REDUCE_BLOCK_SIZE
#else
#define REDUCE_SIZE 1024
#endif

namespace caffe2 {

constexpr int kWarpSize = 32;

template <typename T>
inline __device__ T shfl_xor(const T val, int laneMask, int width = kWarpSize) {
#if !defined(USE_ROCM)
  return __shfl_xor_sync(0xffffffff, val, laneMask, width);
#else
  return __shfl_xor(val, laneMask, width);
#endif
}

/// Sums a register value across all warp threads
template <typename T, int ReduceWidth = kWarpSize>
inline __device__ T warpReduceAllSum(T val) {
#pragma unroll
  for (int mask = ReduceWidth / 2; mask > 0; mask >>= 1) {
    val += shfl_xor(val, mask);
  }
  return val;
}

enum roundOption : int { NEAREST = 0, STOCHASTIC = 1 };

template <typename paramType, typename targetType, roundOption roundOpt>
class randFactor {
 public:
  curandStatePhilox4_32_10_t state;
  inline __device__ randFactor(ulong2 seed, int thread_id) {}
  inline __device__ targetType convertTypeFromParamToTarget(paramType param) {
    return param;
  }
  inline __device__ paramType convertTypeFromTargetToParam(targetType target) {
    return target;
  }
};

template <>
inline __device__ randFactor<at::Half, float, STOCHASTIC>::randFactor(
    ulong2 seed,
    int thread_id) {
  curand_init(seed.x, thread_id, seed.y, &state);
}

template <>
inline __device__ float
randFactor<at::Half, float, NEAREST>::convertTypeFromParamToTarget(
    at::Half param) {
  return __half2float(param);
}

template <>
inline __device__ float
randFactor<at::Half, float, STOCHASTIC>::convertTypeFromParamToTarget(
    at::Half param) {
  return __half2float(param);
}

template <>
inline __device__ at::Half
randFactor<at::Half, float, STOCHASTIC>::convertTypeFromTargetToParam(
    float target) {
  uint8_t rand = curand(&state) >> 24;
  unsigned w_int = __float_as_uint(target);
  unsigned assmebles = (w_int & 0xff800000) | (rand << 5);
  unsigned subtract = (w_int & 0xff800000);
  float assmeble_float = __uint_as_float(assmebles) - __uint_as_float(subtract);
  return __float2half_rz(target + assmeble_float);
}

template <>
inline __device__ at::Half
randFactor<at::Half, float, NEAREST>::convertTypeFromTargetToParam(
    float target) {
  return __float2half(target);
}

static inline __device__ void gpuAtomicAdd(float* address, float val) {
  gpu_atomic_add(address, val);
}

static inline __device__ void gpuAtomicAdd(c10::Half* address, c10::Half val) {
#if (                      \
    (defined(USE_ROCM)) || \
    (defined(CUDA_VERSION) && (CUDA_VERSION < 10000)) || \
    (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
  unsigned int* address_as_ui =
      (unsigned int*)((char*)address - ((size_t)address & 2));
  unsigned int old = *address_as_ui;
  unsigned int assumed;

  do {
    assumed = old;
    at::Half hsum;
    hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
    hsum = hsum + val;
    old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16)
                              : (old & 0xffff0000) | hsum.x;
    old = atomicCAS(address_as_ui, assumed, old);
  } while (assumed != old);
#else
  atomicAdd(reinterpret_cast<__half*>(address), val);
#endif
}

template <
    typename SIndex,
    typename TParam,
    typename T,
    bool ExactBlock = false,
    roundOption roundOpt = NEAREST>
#if defined(USE_ROCM)
C10_LAUNCH_BOUNDS_2(1024, SEGREDUCE_MINBLOCKS)
#endif
__global__ void rowwise_sparse_adagrad_fused_length_sum_gradient_kernel(
    const int* __restrict__ prefix_sum_length_data, // prefix of lengths
                                                    // (offsets for the
                                                    // segments)
    int num_indices, // size of the indices array
    int block_size, // embedding dimension size
    int num_lengths, // number of segments
    const float epsilon,
    TParam* param,
    T* param_mom,
    const SIndex* indices,
    const T* __restrict__ grad,
    const float* lr,
    ulong2 seed,
    float weight_decay = 0.f) {
  const float LR = lr[0];
  // num_lengths blocks, each block process one segment
  int group = blockIdx.x; // the group-th segment
  int start = group == 0
      ? 0
      : prefix_sum_length_data[group - 1]; // start offset of the segment
  int end = prefix_sum_length_data[group]; // end offset of the segment
  CUDA_KERNEL_ASSERT(start <= num_indices);
  CUDA_KERNEL_ASSERT(end <= num_indices);

  class randFactor<TParam, T, roundOpt> rand_factor(
      seed,
      blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x +
          threadIdx.x);

  if (ExactBlock) {
    // Specialize WarpReduce for type float
    typedef cub::WarpReduce<float> WarpReduce;
    // Allocate WarpReduce shared memory for 32 warps, 1024 / 32 = 32
    __shared__ typename WarpReduce::TempStorage temp_storage[32];

    const size_t gradIdx = group * block_size + threadIdx.x; // index for grad
    for (int line = start + threadIdx.y; line < end; line += blockDim.y) {
      // line: the idx in the indices
      // threadIdx.x: index in the embedding dimension
      const SIndex index =
          indices[line]; // the index-th row in the embedding table
      float sum_squares = 0.0;
      __shared__ float row_sum_squares_avg;

      // block_size == blockDim.x
      const size_t paramIdx =
          index * block_size + threadIdx.x; // index for param
      const float x_ij = grad[gradIdx] +
          weight_decay * rand_factor.convertTypeFromParamToTarget(param[paramIdx]);
      sum_squares += x_ij * x_ij;

      // Return the warp-wide sums to each lane0 (threads 0, 32, 64, 96, ...)
      int warp_id = (threadIdx.y * blockDim.x + threadIdx.x) / 32;
      float reduce_result = WarpReduce(temp_storage[warp_id]).Sum(sum_squares);

      if ((threadIdx.y * blockDim.x + threadIdx.x) % 32 == 0) {
        row_sum_squares_avg = reduce_result / static_cast<float>(block_size);
        gpuAtomicAdd(&param_mom[index], static_cast<T>(row_sum_squares_avg));
      }
      __syncthreads();

      // update param
      float step = LR / (sqrtf(param_mom[index]) + epsilon);
      param[paramIdx] = rand_factor.convertTypeFromTargetToParam(
          rand_factor.convertTypeFromParamToTarget(param[paramIdx]) + x_ij * step);
    }
  } else {
    // TODO: Tuning NumThreads for sum_squares
    // TODO: Not compatible with embedding dim larger than maxThread
    typedef cub::BlockReduce<float, REDUCE_SIZE> BlockReduce;
    __shared__ BlockReduce::TempStorage temp_storage;
    int valid = min(block_size, blockDim.x);

    for (int line = start; line < end; ++line) {
      // line: the idx in the indices
      const SIndex index = indices[line]; // the index row in the embedding
      float sum_squares = 0.0;
      __shared__ float row_sum_squares_avg;

      for (int i = threadIdx.x; i < block_size; i += blockDim.x) {
        // i: index in the embedding dimension
        const float x_ij = grad[group * block_size + i] +
            weight_decay *
                rand_factor.convertTypeFromParamToTarget(
                    param[index * block_size + i]);
        sum_squares += x_ij * x_ij;
      }
      float reduce_result = BlockReduce(temp_storage).Sum(sum_squares, valid);

      if (threadIdx.x == 0) {
        row_sum_squares_avg = reduce_result / static_cast<float>(block_size);
        float mom_new = param_mom[index] + static_cast<T>(row_sum_squares_avg);
        param_mom[index] = mom_new;
      }
      __syncthreads();

      // update param
      float step = LR / (sqrtf(param_mom[index]) + epsilon);
      for (int i = threadIdx.x; i < block_size; i += blockDim.x) {
        size_t paramIdx = index * block_size + i; // index for param
        float x_ij = grad[group * block_size + i] +
            weight_decay *
                rand_factor.convertTypeFromParamToTarget(param[paramIdx]);
        float param_new =
            rand_factor.convertTypeFromParamToTarget(param[paramIdx]) + x_ij * step;
        param[paramIdx] = rand_factor.convertTypeFromTargetToParam(param_new);
      }
    }
  }
}

} // namespace caffe2