1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#include <algorithm>
#include <cub/block/block_reduce.cuh>
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/sgd/adagrad_op.h"
#include "caffe2/utils/cub_namespace.cuh"
namespace caffe2 {
__global__ void AdagradUpdate(
int N,
const float* w,
const float* g,
const float* h,
float* nw,
float* nh,
float epsilon,
float decay,
const float* lr,
float weight_decay = 0.f) {
CUDA_1D_KERNEL_LOOP(i, N) {
float gi = g[i] + weight_decay * w[i];
float hi = nh[i] = decay * h[i] + gi * gi;
nw[i] = w[i] + lr[0] * gi / (sqrtf(hi) + epsilon);
}
}
template <>
void adagrad_update<CUDAContext>(
int N,
const float* w,
const float* g,
const float* h,
float* nw,
float* nh,
float epsilon,
float decay,
const float* lr,
CUDAContext* context,
float weight_decay) {
AdagradUpdate<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
N, w, g, h, nw, nh, epsilon, decay, lr, weight_decay);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template <typename SIndex, typename THalf>
__global__ void SparseAdagradKernel(
const size_t N,
const size_t grad_slice_sz,
const float epsilon,
THalf* param,
THalf* param_mom,
const SIndex* indices,
const float* grad,
const float* lr,
float weight_decay = 0.f) {
const float LR = lr[0];
CUDA_1D_KERNEL_LOOP(i, N) {
const size_t gradIdx = i;
const SIndex index = indices[i / grad_slice_sz];
const size_t paramIdx = index * grad_slice_sz + (i % grad_slice_sz);
float gi = grad[gradIdx] + weight_decay * param[paramIdx];
float mom_new = gi * gi + param_mom[paramIdx];
param_mom[paramIdx] = mom_new;
float param_new = LR * gi / (sqrtf(mom_new) + epsilon) + param[paramIdx];
param[paramIdx] = param_new;
}
}
/**
* Calculate RowwiseSparseAdagrad
* M: gradients.dims[0]
* N: gradients.size_from_dim(1)
* grad: pointer to the gradients
* param: pointer to weights
* param_mom: pointer to the momentum
* indices: keys
*/
template <typename SIndex>
__global__ void RowWiseSparseAdagradKernel(
const int M,
const int N,
const float epsilon,
float* param,
float* param_mom,
const SIndex* indices,
const float* grad,
const float* lr,
float weight_decay = 0.f) {
typedef cub::BlockReduce<float, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ BlockReduce::TempStorage temp_storage;
int valid = min(N, CAFFE_CUDA_NUM_THREADS);
// in case gridDim is smaller than M
for (int i = blockIdx.x; i < M; i += gridDim.x) {
const SIndex index = indices[i];
float sum_squares = 0.0;
__shared__ float row_sum_squares_avg;
// in case N is bigger than block size which is 512 by default
for (int j = threadIdx.x; j < N; j += blockDim.x) {
const float x_ij = grad[i * N + j] + weight_decay * param[index * N + j];
sum_squares += x_ij * x_ij;
}
float reduce_result = BlockReduce(temp_storage).Sum(sum_squares, valid);
if (threadIdx.x == 0) {
row_sum_squares_avg = reduce_result / (float)N;
param_mom[index] += row_sum_squares_avg;
}
__syncthreads();
// update param
float step = lr[0] / (sqrtf(param_mom[index]) + epsilon);
for (int j = threadIdx.x; j < N; j += blockDim.x) {
const float x_ij = grad[i * N + j] + weight_decay * param[index * N + j];
param[index * N + j] = param[index * N + j] + x_ij * step;
}
}
}
template <typename T, class Context>
class CUDASparseAdagradOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
CUDASparseAdagradOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
epsilon_(this->template GetSingleArgument<float>("epsilon", 1e-5f)),
weight_decay_(
this->template GetSingleArgument<float>("weight_decay", 0.f)) {
VLOG(1) << "gradient optimization operator in use: "
<< "CUDASparseAdagradOp"
<< " weight_decay_=" << weight_decay_;
const T decay = this->template GetSingleArgument<T>("decay", 1.0f);
CAFFE_ENFORCE_EQ(decay, 1.0, "Decay is not supported for SparseAdagradOp");
}
bool RunOnDevice() override {
// Enforce shapes
CAFFE_ENFORCE_EQ(Input(PARAM).size(), Input(MOMENT_1).size());
CAFFE_ENFORCE_EQ(Input(LR).size(), 1);
CAFFE_ENFORCE_EQ(
Input(PARAM).size_from_dim(1),
Input(GRAD).size_from_dim(Input(INDICES).ndim()));
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <typename IndexType>
bool DoRunWithType() {
auto n = Input(INDICES).size();
if (n == 0) {
return true;
}
return DispatchHelper<TensorTypes2<float, at::Half>, IndexType>::call(
this, Input(PARAM));
}
template <typename IndexType, typename THalf>
bool DoRunWithType2() {
const auto* lr = Input(LR).template data<T>();
const auto* indices = Input(INDICES).template data<IndexType>();
const auto* gradIn = Input(GRAD).template data<T>();
const auto* paramIn = Input(PARAM).template data<THalf>();
const auto* momentIn = Input(MOMENT_1).template data<THalf>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<THalf>();
auto* momentOut = Output(OUTPUT_MOMENT_1)->template mutable_data<THalf>();
auto N = Input(GRAD).size();
auto grad_slice_sz = Input(GRAD).size_from_dim(Input(INDICES).ndim());
if (N == 0) {
// empty grad, nothing to do here, not even launching the kernel
return true;
}
SparseAdagradKernel<IndexType, THalf>
<<<CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N,
grad_slice_sz,
epsilon_,
Output(OUTPUT_PARAM)->template mutable_data<THalf>(),
Output(OUTPUT_MOMENT_1)->template mutable_data<THalf>(),
Input(INDICES).template data<IndexType>(),
Input(GRAD).template data<float>(),
Input(LR).template data<float>(),
weight_decay_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
protected:
T epsilon_;
T weight_decay_;
INPUT_TAGS(PARAM, MOMENT_1, INDICES, GRAD, LR);
OUTPUT_TAGS(OUTPUT_PARAM, OUTPUT_MOMENT_1);
};
template <>
template <typename SIndex>
bool RowWiseSparseAdagradOp<CUDAContext>::DoRunWithType() {
auto N = Input(GRAD).size();
if (N == 0) {
// empty grad, nothing to do here, not even launching the kernel
return true;
}
// size of the 1st dimension of the input gradient
auto GRAD_M = Input(GRAD).dim32(0);
auto GRAD_N = N / GRAD_M;
// Cases with GRAND_N < 128 can have more swarms if number of threads is lower
int num_threads = CAFFE_CUDA_NUM_THREADS;
if (GRAD_N < num_threads) {
num_threads = GRAD_N;
}
// each thread block will handle multiple rows of the input and output
RowWiseSparseAdagradKernel<<<
std::min(GRAD_M, CAFFE_MAXIMUM_NUM_BLOCKS),
num_threads,
0,
context_.cuda_stream()>>>(
GRAD_M,
GRAD_N,
epsilon_,
Output(OUTPUT_PARAM)->template mutable_data<float>(),
Output(OUTPUT_MOMENT_1)->template mutable_data<float>(),
Input(INDICES).template data<SIndex>(),
Input(GRAD).template data<float>(),
Input(LR).template data<float>(),
weight_decay_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(Adagrad, AdagradOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(SparseAdagrad, CUDASparseAdagradOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
RowWiseSparseAdagrad,
RowWiseSparseAdagradOp<CUDAContext>);
} // namespace caffe2
|