1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
#include <cub/block/block_reduce.cuh>
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/sgd/adam_op.h"
#include "caffe2/utils/cub_namespace.cuh"
namespace caffe2 {
__global__ void AdamUpdate(
int N,
const float* g,
const float* m,
const float* v,
float* ng,
float* nm,
float* nv,
float beta1,
float beta2,
float eps_hat,
float correction,
const float* lr) {
CUDA_1D_KERNEL_LOOP(i, N) {
float gi = g[i];
float mi = nm[i] = m[i] * beta1 + gi * (1 - beta1);
float vi = nv[i] = v[i] * beta2 + gi * gi * (1 - beta2);
ng[i] = lr[0] * correction * mi / (sqrtf(vi) + eps_hat);
}
}
template <>
void adam_update<CUDAContext>(
int N,
const float* g,
const float* m,
const float* v,
float* ng,
float* nm,
float* nv,
float beta1,
float beta2,
float eps_hat,
float correction,
const float* lr,
CUDAContext* context) {
AdamUpdate<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
N, g, m, v, ng, nm, nv, beta1, beta2, eps_hat, correction, lr);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
__global__ void AdamCompute(
int N,
const float* w,
const float* g,
const float* m,
const float* v,
float* nw,
float* nm,
float* nv,
float beta1,
float beta2,
float eps_hat,
float correction,
const float* lr) {
CUDA_1D_KERNEL_LOOP(i, N) {
float gi = g[i];
float mi = nm[i] = m[i] * beta1 + gi * (1 - beta1);
float vi = nv[i] = v[i] * beta2 + gi * gi * (1 - beta2);
float ng = lr[0] * correction * mi / (sqrtf(vi) + eps_hat);
nw[i] = w[i] + ng;
}
}
template <>
void adam_compute<CUDAContext>(
int N,
const float* w,
const float* g,
const float* m,
const float* v,
float* nw,
float* nm,
float* nv,
float beta1,
float beta2,
float eps_hat,
float correction,
const float* lr,
CUDAContext* context) {
AdamCompute<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
N, w, g, m, v, nw, nm, nv, beta1, beta2, eps_hat, correction, lr);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
__global__ void AdamComputeOutputGrad(
int N,
const float* w,
const float* g,
const float* m,
const float* v,
float* nw,
float* nm,
float* nv,
float* ng,
float beta1,
float beta2,
float eps_hat,
float correction,
const float* lr) {
CUDA_1D_KERNEL_LOOP(i, N) {
float gi = g[i];
float mi = nm[i] = m[i] * beta1 + gi * (1 - beta1);
float vi = nv[i] = v[i] * beta2 + gi * gi * (1 - beta2);
float ngi = ng[i] = correction * mi / (sqrtf(vi) + eps_hat);
nw[i] = w[i] + lr[0] * ngi;
}
}
template <>
void adam_compute_output_grad<CUDAContext>(
int N,
const float* w,
const float* g,
const float* m,
const float* v,
float* nw,
float* nm,
float* nv,
float* ng,
float beta1,
float beta2,
float eps_hat,
float correction,
const float* lr,
CUDAContext* context) {
AdamComputeOutputGrad<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
N, w, g, m, v, nw, nm, nv, ng, beta1, beta2, eps_hat, correction, lr);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template <typename SIndex>
__global__ void SparseAdamKernel(
const size_t N,
const size_t grad_slice_sz,
const float beta1,
const float beta2,
const float epsilon,
float* param,
float* mom1,
float* mom2,
const SIndex* indices,
const float* grad,
const float correction,
const float* lr,
const float iter) {
CUDA_1D_KERNEL_LOOP(i, N) {
const size_t gradIdx = i;
const SIndex index = indices[i / grad_slice_sz];
const size_t paramIdx = index * grad_slice_sz + (i % grad_slice_sz);
float m1n = mom1[paramIdx] =
mom1[paramIdx] * beta1 + grad[gradIdx] * (1.0f - beta1);
float m2n = mom2[paramIdx] =
mom2[paramIdx] * beta2 + grad[gradIdx] * grad[gradIdx] * (1.0f - beta2);
param[paramIdx] += lr[0] * correction * m1n / (sqrt(m2n) + epsilon);
}
}
template <typename SIndex>
__global__ void SparseAdamOutputGradKernel(
const size_t N,
const size_t grad_slice_sz,
const float beta1,
const float beta2,
const float epsilon,
float* param,
float* mom1,
float* mom2,
float* output_grad,
const SIndex* indices,
const float* grad,
const float correction,
const float* lr,
const float iter) {
CUDA_1D_KERNEL_LOOP(i, N) {
const size_t gradIdx = i;
const SIndex index = indices[i / grad_slice_sz];
const size_t paramIdx = index * grad_slice_sz + (i % grad_slice_sz);
float m1n = mom1[paramIdx] =
mom1[paramIdx] * beta1 + grad[gradIdx] * (1.0f - beta1);
float m2n = mom2[paramIdx] =
mom2[paramIdx] * beta2 + grad[gradIdx] * grad[gradIdx] * (1.0f - beta2);
float gradOut = output_grad[gradIdx] =
correction * m1n / (sqrt(m2n) + epsilon);
param[paramIdx] += lr[0] * gradOut;
}
}
template <typename SIndex>
__global__ void RowWiseSparseAdamKernel(
const int M,
const int N,
const float beta1,
const float beta2,
const float epsilon,
float* param,
float* mom1,
float* mom2,
const SIndex* indices,
const float* grad,
const float correction,
const float* lr) {
typedef cub::BlockReduce<float, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ BlockReduce::TempStorage temp_storage;
int valid = min(N, CAFFE_CUDA_NUM_THREADS);
// in case gridDim is smaller than M
for (int i = blockIdx.x; i < M; i += gridDim.x) {
const SIndex index = indices[i];
float sum_squares = 0.0;
__shared__ float row_sum_squares_avg;
// in case N is bigger than block size which is 512 by default
for (int j = threadIdx.x; j < N; j += blockDim.x) {
const float x_ij = grad[i * N + j];
sum_squares += x_ij * x_ij;
}
float reduce_sum_squares =
BlockReduce(temp_storage).Sum(sum_squares, valid);
if (threadIdx.x == 0) {
row_sum_squares_avg = reduce_sum_squares / (float)N;
mom2[index] = mom2[index] * beta2 + row_sum_squares_avg * (1.0f - beta2);
}
__syncthreads();
// update param
float step = correction / (std::sqrt(mom2[index]) + epsilon);
for (int j = threadIdx.x; j < N; j += blockDim.x) {
mom1[index * N + j] =
mom1[index * N + j] * beta1 + grad[i * N + j] * (1.0f - beta1);
param[index * N + j] += lr[0] * mom1[index * N + j] * step;
}
}
}
template <typename SIndex>
__global__ void RowWiseSparseAdamOutputGradKernel(
const int M,
const int N,
const float beta1,
const float beta2,
const float epsilon,
float* param,
float* mom1,
float* mom2,
float* output_grad,
const SIndex* indices,
const float* grad,
const float correction,
const float* lr) {
typedef cub::BlockReduce<float, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ BlockReduce::TempStorage temp_storage;
int valid = min(N, CAFFE_CUDA_NUM_THREADS);
// in case gridDim is smaller than M
for (int i = blockIdx.x; i < M; i += gridDim.x) {
const SIndex index = indices[i];
float sum_squares = 0.0;
__shared__ float row_sum_squares_avg;
// in case N is bigger than block size which is 512 by default
for (int j = threadIdx.x; j < N; j += blockDim.x) {
const float x_ij = grad[i * N + j];
sum_squares += x_ij * x_ij;
}
float reduce_sum_squares =
BlockReduce(temp_storage).Sum(sum_squares, valid);
if (threadIdx.x == 0) {
row_sum_squares_avg = reduce_sum_squares / (float)N;
mom2[index] = mom2[index] * beta2 + row_sum_squares_avg * (1.0f - beta2);
}
__syncthreads();
// update param
float step = correction / (std::sqrt(mom2[index]) + epsilon);
for (int j = threadIdx.x; j < N; j += blockDim.x) {
mom1[index * N + j] =
mom1[index * N + j] * beta1 + grad[i * N + j] * (1.0f - beta1);
output_grad[i * N + j] = mom1[index * N + j] * step;
param[index * N + j] += lr[0] * output_grad[i * N + j];
}
}
}
template <>
template <typename SIndex>
bool SparseAdamOp<float, CUDAContext>::DoRunWithType() {
Output(OUTPUT_PARAM)->ResizeLike(Input(PARAM));
Output(OUTPUT_MOMENT_1)->ResizeLike(Input(MOMENT_1));
Output(OUTPUT_MOMENT_2)->ResizeLike(Input(MOMENT_2));
auto N = Input(GRAD).size();
auto grad_slice_sz = Input(GRAD).size_from_dim(Input(INDICES).ndim());
const auto iter =
OperatorBase::Input<Tensor>(ITER, CPU).template data<int64_t>()[0];
const float correction = sqrtf(1.0f - std::pow(beta2_, iter + 1)) /
(1.0f - std::pow(beta1_, iter + 1));
if (OutputSize() == 3) {
SparseAdamKernel<SIndex>
<<<CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N,
grad_slice_sz,
beta1_,
beta2_,
epsilon_,
Output(OUTPUT_PARAM)->template mutable_data<float>(),
Output(OUTPUT_MOMENT_1)->template mutable_data<float>(),
Output(OUTPUT_MOMENT_2)->template mutable_data<float>(),
Input(INDICES).template data<SIndex>(),
Input(GRAD).template data<float>(),
correction,
Input(LR).template data<float>(),
iter);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
Output(OUTPUT_GRAD)->ResizeLike(Input(GRAD));
SparseAdamOutputGradKernel<SIndex>
<<<CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N,
grad_slice_sz,
beta1_,
beta2_,
epsilon_,
Output(OUTPUT_PARAM)->template mutable_data<float>(),
Output(OUTPUT_MOMENT_1)->template mutable_data<float>(),
Output(OUTPUT_MOMENT_2)->template mutable_data<float>(),
Output(OUTPUT_GRAD)->template mutable_data<float>(),
Input(INDICES).template data<SIndex>(),
Input(GRAD).template data<float>(),
correction,
Input(LR).template data<float>(),
iter);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
template <>
template <typename SIndex>
bool RowWiseSparseAdamOp<float, CUDAContext>::DoRunWithType() {
Output(OUTPUT_PARAM)->ResizeLike(Input(PARAM));
Output(OUTPUT_MOMENT_1)->ResizeLike(Input(MOMENT_1));
Output(OUTPUT_MOMENT_2)->ResizeLike(Input(MOMENT_2));
auto N = Input(GRAD).size();
if (N == 0) {
// empty grad, nothing to do here, not even launching the kernel
return true;
}
const auto iter =
OperatorBase::Input<Tensor>(ITER, CPU).template data<int64_t>()[0];
const float correction = sqrtf(1.0f - std::pow(beta2_, iter + 1)) /
(1.0f - std::pow(beta1_, iter + 1));
// size of the 1st dimension of the input gradient
auto GRAD_M = Input(GRAD).dim32(0);
auto GRAD_N = N / GRAD_M;
if (OutputSize() == 3) {
RowWiseSparseAdamKernel<SIndex>
<<<std::min(GRAD_M, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
GRAD_M,
GRAD_N,
beta1_,
beta2_,
epsilon_,
Output(OUTPUT_PARAM)->template mutable_data<float>(),
Output(OUTPUT_MOMENT_1)->template mutable_data<float>(),
Output(OUTPUT_MOMENT_2)->template mutable_data<float>(),
Input(INDICES).template data<SIndex>(),
Input(GRAD).template data<float>(),
correction,
Input(LR).template data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
Output(OUTPUT_GRAD)->ResizeLike(Input(GRAD));
RowWiseSparseAdamOutputGradKernel<SIndex>
<<<std::min(GRAD_M, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
GRAD_M,
GRAD_N,
beta1_,
beta2_,
epsilon_,
Output(OUTPUT_PARAM)->template mutable_data<float>(),
Output(OUTPUT_MOMENT_1)->template mutable_data<float>(),
Output(OUTPUT_MOMENT_2)->template mutable_data<float>(),
Output(OUTPUT_GRAD)->template mutable_data<float>(),
Input(INDICES).template data<SIndex>(),
Input(GRAD).template data<float>(),
correction,
Input(LR).template data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
REGISTER_CUDA_OPERATOR(Adam, AdamOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(SparseAdam, SparseAdamOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
RowWiseSparseAdam,
RowWiseSparseAdamOp<float, CUDAContext>);
} // namespace caffe2
|