1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#include "ftrl_op.h"
namespace caffe2 {
template <class T>
inline T sgn(const T x) {
return (x == 0 ? 0 : (x < 0 ? -1 : 1));
}
template <typename T>
inline void ftrl_compute(
const T w,
const T n,
const T z,
const T g,
T& nw,
T& nn,
T& nz,
const FtrlParams<T>& params) {
auto new_n = n + g * g;
auto sigma = (sqrt(new_n) - sqrt(n)) * params.alphaInv;
nn = new_n;
nz = z + g - sigma * w;
// update the weight
if (std::abs(nz) > params.lambda1) {
nw = (params.lambda1 * sgn(nz) - nz) /
((params.beta + sqrt(new_n)) * params.alphaInv + params.lambda2);
} else {
nw = 0.0;
}
}
// TODO(dzhulgakov): implement SIMD-based version
template <typename Context, typename T>
void ftrl_update(
int N,
const T* w,
const T* nz,
const T* g,
T* new_w,
T* new_nz,
const FtrlParams<T>& params,
Context* /*context*/) {
// TODO(cxj): use OMP when it is reliable
// #pragma omp parallel for
for (auto i = 0; i < N; ++i) {
ftrl_compute(
w[i],
nz[i * 2],
nz[i * 2 + 1],
g[i],
new_w[i],
new_nz[i * 2],
new_nz[i * 2 + 1],
params);
}
}
template <typename T, typename Context>
bool FtrlOp<T, Context>::RunOnDevice() {
// run time learning rate override
if (ALPHA < InputSize()) {
CAFFE_ENFORCE_EQ(Input(ALPHA).numel(), 1, "alpha should be real-valued");
params_.alphaInv = 1.0 / *(Input(ALPHA).template data<T>());
}
CAFFE_ENFORCE_EQ(Input(GRAD).numel(), Input(VAR).numel());
CAFFE_ENFORCE_EQ(Input(GRAD).numel() * 2, Input(N_Z).numel());
Output(OUTPUT_VAR)->ResizeLike(Input(VAR));
Output(OUTPUT_N_Z)->ResizeLike(Input(N_Z));
ftrl_update<Context>(
Input(GRAD).numel(),
Input(VAR).template data<T>(),
Input(N_Z).template data<T>(),
Input(GRAD).template data<T>(),
Output(OUTPUT_VAR)->template mutable_data<T>(),
Output(OUTPUT_N_Z)->template mutable_data<T>(),
params_,
&context_);
return true;
}
template <typename T>
template <typename SIndex>
void SparseFtrlOp<T>::DoRun() {
auto* var = Output(OUTPUT_VAR);
auto* n_z = Output(OUTPUT_N_Z);
auto& indices = Input(INDICES);
auto& grad = Input(GRAD);
CAFFE_ENFORCE_EQ(&Input(VAR), var, "In place operation is required");
CAFFE_ENFORCE_EQ(&Input(N_Z), n_z, "In place operation is required");
int64_t M = var->numel();
int64_t N = var->size(0);
int64_t block_size = M / N;
int64_t K = indices.numel();
TORCH_DCHECK_EQ(M * 2, n_z->numel());
TORCH_DCHECK_EQ(grad.numel(), K * block_size);
T* w = var->template mutable_data<T>();
T* nz = n_z->template mutable_data<T>();
const SIndex* idxs = indices.template data<SIndex>();
const T* g = grad.template data<T>();
// TODO(cxj): use OMP when it is reliable
// #pragma omp parallel for
for (int64_t i = 0; i < K; ++i) {
SIndex idx = idxs[i];
DCHECK(0 <= idx && idx < N) << "Index out of bounds: " << idx
<< ", range 0 to " << N;
if (block_size == 1) {
ftrl_compute(
w[idx],
nz[idx * 2],
nz[idx * 2 + 1],
g[i],
w[idx],
nz[idx * 2],
nz[idx * 2 + 1],
params_);
} else {
int64_t x = block_size * idx;
ftrl_update(
block_size,
w + x,
nz + x * 2,
g + i * block_size,
w + x,
nz + x * 2,
params_,
&context_);
}
}
}
namespace {
REGISTER_CPU_OPERATOR(Ftrl, FtrlOp<float, CPUContext>);
OPERATOR_SCHEMA(Ftrl).NumInputs(3, 4).NumOutputs(2).AllowInplace({{0, 0},
{1, 1}});
SHOULD_NOT_DO_GRADIENT(Ftrl);
REGISTER_CPU_OPERATOR(SparseFtrl, SparseFtrlOp<float>);
OPERATOR_SCHEMA(SparseFtrl)
.NumInputs(4, 5)
.NumOutputs(2)
.EnforceInplace({{0, 0}, {1, 1}});
SHOULD_NOT_DO_GRADIENT(SparseFtrl);
}
}
|