1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
#ifndef CAFFE2_SGD_LEARNING_RATE_FUNCTORS_H_
#define CAFFE2_SGD_LEARNING_RATE_FUNCTORS_H_
#include <cmath>
#include <list>
#include <map>
#ifdef _MSC_VER
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include <math.h>
#endif // _MSC_VER
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
namespace caffe2 {
// LearningRateFunctor is a functor that when fed with an iter number, produces
// the learning rate for the corresponding iteration.
template <typename T>
class LearningRateFunctor {
public:
virtual ~LearningRateFunctor() {}
virtual T operator()(const int64_t iter) const = 0;
};
// Fixed: not changing the learning rate at all.
template <typename T>
class FixedLearningRate : public LearningRateFunctor<T> {
public:
T operator()(const int64_t /*iter*/) const override {
return 1.;
}
};
// Alter: alternatate learning rate with active_period and inactive_period.
// update for a duration of active_period and then stop for a duration of
// inactive_period if active_first, and vice versa
template <typename T>
class AlternateLearningRate : public LearningRateFunctor<T> {
public:
AlternateLearningRate(
const int64_t active_period,
const int64_t inactive_period,
const bool active_first)
: active_period_(active_period),
inactive_period_(inactive_period),
active_first_(active_first) {}
T operator()(const int64_t iter) const override {
if (iter % (active_period_ + inactive_period_) <
(active_first_ ? active_period_ : inactive_period_)) {
return active_first_ ? 1. : 0.;
} else {
return active_first_ ? 0. : 1.;
};
};
int64_t active_period_;
int64_t inactive_period_;
bool active_first_;
};
// Step: return gamma ^ (floor(iter / step))
template <typename T>
class StepLearningRate : public LearningRateFunctor<T> {
public:
StepLearningRate(const int stepsize, const T gamma)
: stepsize_(stepsize), gamma_(gamma) {}
T operator()(const int64_t iter) const override {
return std::pow(gamma_, static_cast<T>(iter / stepsize_));
}
int stepsize_;
T gamma_;
};
// Exp: return gamma ^ iter
template <typename T>
class ExpLearningRate : public LearningRateFunctor<T> {
public:
explicit ExpLearningRate(const T gamma) : gamma_(gamma) {}
T operator()(const int64_t iter) const override {
return std::pow(gamma_, static_cast<T>(iter));
}
T gamma_;
};
// Gate: return multiplier_1 if before num_iter, else multiplier_2
template <typename T>
class GateLearningRate : public LearningRateFunctor<T> {
public:
GateLearningRate(
const T multiplier_1,
const T multiplier_2,
const int64_t num_iter)
: multiplier_1_(multiplier_1),
multiplier_2_(multiplier_2),
num_iter_(num_iter) {}
T operator()(const int64_t iter) const override {
if (iter >= int64_t(num_iter_)) {
return T(multiplier_2_);
}
return T(multiplier_1_);
}
T multiplier_1_;
T multiplier_2_;
uint64_t num_iter_;
};
// Inv: return (1 + gamma * iter) ^ (-power)
template <typename T>
class InvLearningRate : public LearningRateFunctor<T> {
public:
InvLearningRate(const T gamma, const T power)
: gamma_(gamma), power_(power) {}
T operator()(const int64_t iter) const override {
return std::pow(T(1) + gamma_ * iter, -power_);
}
T gamma_;
T power_;
};
// Poly: return (1 - iter/max_iter) ^ (power)
template <typename T>
class PolyLearningRate : public LearningRateFunctor<T> {
public:
PolyLearningRate(const T power, const int64_t max_iter)
: power_(power), max_iter_(max_iter) {}
T operator()(const int64_t iter) const override {
return std::pow(1 - T(iter) / T(max_iter_), power_);
}
T power_;
uint64_t max_iter_;
};
// LinearWarmup: return max(iter/num_iter, 1)
template <typename T>
class LinearWarmupLearningRate : public LearningRateFunctor<T> {
public:
LinearWarmupLearningRate(const T start_multiplier, const int64_t num_iter)
: start_multiplier_(start_multiplier), num_iter_(num_iter) {}
T operator()(const int64_t iter) const override {
if (iter >= int64_t(num_iter_)) {
return 1.;
}
return start_multiplier_ +
(1. - start_multiplier_) * T(iter) / T(num_iter_);
}
T start_multiplier_;
uint64_t num_iter_;
};
// ConstantWarmup: return scale when iter < num_iter, and 1 otherwise
template <typename T>
class ConstantWarmupLearningRate : public LearningRateFunctor<T> {
public:
ConstantWarmupLearningRate(const T multiplier, const int64_t num_iter)
: multiplier_(multiplier), num_iter_(num_iter) {}
T operator()(const int64_t iter) const override {
if (iter >= int64_t(num_iter_)) {
return 1.;
}
return T(multiplier_);
}
T multiplier_;
uint64_t num_iter_;
};
// ConstantWarmup: return scale when iter < num_iter, and 1 otherwise
template <typename T>
class PieceWarmupLearningRate : public LearningRateFunctor<T> {
public:
PieceWarmupLearningRate(
const T m1,
const int64_t n1,
const T m2,
const int64_t n2,
const T m3)
: m1_(m1), m2_(m2), m3_(m3), n1_(n1), n2_(n2){};
T operator()(const int64_t iter) const override {
if (iter < int64_t(n1_)) {
return m1_;
} else if (iter < int64_t(n2_)) {
return m2_;
}
return m3_;
}
T m1_, m2_, m3_;
uint64_t n1_, n2_;
};
// hill: the learning rate changes according to following 3 stages
// 1) linear warmup (increasing) at first num_iter steps from start_multiplier
// 2) inverse shrink (decreasing) afterwards (gamma, power)
// 3) lower bounded by end_multiplier
template <typename T>
class HillLearningRate : public LearningRateFunctor<T> {
public:
HillLearningRate(
const int64_t num_iter,
const T start_multiplier,
const T gamma,
const T power,
const T end_multiplier)
: linear_warmup_lr_(start_multiplier, num_iter),
inv_lr_(gamma, power),
num_iter_(num_iter),
end_multiplier_(end_multiplier) {}
T operator()(const int64_t iter) const override {
if (iter < num_iter_) {
return linear_warmup_lr_(iter);
} else {
return std::max(end_multiplier_, inv_lr_(iter - num_iter_));
}
}
LinearWarmupLearningRate<T> linear_warmup_lr_;
InvLearningRate<T> inv_lr_;
int64_t num_iter_;
T end_multiplier_;
};
// slope: the learning rate changes according to 2 stages
// 1) constantWarmup with multiplier_1
// 2) linearly shink to multiplier_2:
// max{
// multiplier_1 + (iter - num_iter_1) * (multiplier_2 - multiplier_1) / (num_iter_2 - num_iter_1),
// multiplier_2
// }
template <typename T>
class SlopeLearningRate : public LearningRateFunctor<T> {
public:
SlopeLearningRate(
const int64_t num_iter_1,
const T multiplier_1,
const T num_iter_2,
const T multiplier_2)
: num_iter_1_(num_iter_1),
multiplier_1_(multiplier_1),
num_iter_2_(num_iter_2),
multiplier_2_(multiplier_2) {}
T operator()(const int64_t iter) const override {
if (iter < num_iter_1_) {
return multiplier_1_;
} else {
return std::max(
multiplier_2_,
multiplier_1_ + (iter - num_iter_1_) * (multiplier_2_ - multiplier_1_) / (num_iter_2_ - num_iter_1_)
);
}
}
int64_t num_iter_1_;
T multiplier_1_;
int64_t num_iter_2_;
T multiplier_2_;
};
template <typename T>
class CompositeLearningRateItem {
public:
CompositeLearningRateItem(
int64_t num_iter,
float lr_scale,
LearningRateFunctor<T>* policy)
: num_iter_(num_iter), lr_scale_(lr_scale), policy_(policy) {}
int64_t num_iter_;
float lr_scale_;
LearningRateFunctor<T>* policy_;
};
// composite: the learning policy changes according to current iteration #
template <typename T>
class CompositeLearningRate : public LearningRateFunctor<T> {
public:
CompositeLearningRate(
const std::list<CompositeLearningRateItem<T>>& sub_policies) {
TORCH_DCHECK_GT(sub_policies.size(), 0);
int64_t num_iter_start = 1;
for (auto it = sub_policies.begin(); it != sub_policies.end(); ++it) {
TORCH_DCHECK_GT(it->num_iter_, 0);
sub_policies_[num_iter_start].reset(it->policy_);
sub_policy_lr_scales_[num_iter_start] = it->lr_scale_;
num_iter_start += it->num_iter_;
}
}
T operator()(const int64_t iter) const override {
auto sub_policy = sub_policies_.upper_bound(iter);
DCHECK(sub_policy != sub_policies_.begin());
--sub_policy;
auto sub_policy_lr_scale = sub_policy_lr_scales_.upper_bound(iter);
DCHECK(sub_policy_lr_scale != sub_policy_lr_scales_.begin());
--sub_policy_lr_scale;
return ((*sub_policy->second)(iter)) * (sub_policy_lr_scale->second);
}
private:
std::map<int64_t, std::unique_ptr<LearningRateFunctor<T>>> sub_policies_;
std::map<int64_t, float> sub_policy_lr_scales_;
};
// Cyclical: return a learning rate with period 2 * stepsize and
// lower bound base_lr, upper bound max_lr.
// See https://arxiv.org/pdf/1506.01186.pdf
template <typename T>
class CyclicalLearningRate : public LearningRateFunctor<T> {
public:
CyclicalLearningRate(
const T base_lr,
const T max_lr,
const int stepsize,
const T decay)
: base_lr_(base_lr),
max_lr_(max_lr),
stepsize_(stepsize),
decay_(decay) {}
T operator()(const int64_t iter) const override {
int64_t cycle = static_cast<int>((iter / (2 * stepsize_)) + 1);
T x = std::abs(static_cast<T>(iter) / stepsize_ - 2 * cycle + 1);
return 1 +
(T(std::abs(max_lr_)) / T(std::abs(base_lr_)) - 1) * std::max(T(0.0), (1 - x)) *
std::pow(decay_, static_cast<int>(iter / (2 * stepsize_)));
}
T base_lr_;
T max_lr_;
int stepsize_;
T decay_;
};
// Cosine: return a learning rate with a cosine schedule
// lower bound min_lr, upper bound max_lr.
// See https://arxiv.org/pdf/1608.03983.pdf
template <typename T>
class CosineLearningRate : public LearningRateFunctor<T> {
public:
CosineLearningRate(
const T min_lr,
const T max_lr,
const int64_t period,
const T t_mult,
const T lr_shrink)
: min_lr_(min_lr),
max_lr_(max_lr),
period_(period),
t_mult_(t_mult),
lr_shrink_(lr_shrink) {}
T operator()(const int64_t iter) const override {
T i, t_i, t_curr;
if (t_mult_ != 1.0) {
// the period is changed every time
i = floor(
log(1 - double(iter) / double(period_) * (1.0 - t_mult_)) /
log(t_mult_));
t_i = pow(t_mult_, i) * period_;
t_curr = iter - (1.0 - pow(t_mult_, i)) / (1.0 - t_mult_) * period_;
} else {
// fixed period
i = floor(double(iter) / double(period_));
t_i = period_;
t_curr = iter - t_i * i;
}
T lr_shrink = pow(lr_shrink_, i);
T min_lr = min_lr_ * lr_shrink;
T max_lr = max_lr_ * lr_shrink;
T final_lr =
min_lr + 0.5 * (max_lr - min_lr) * (1 + cos(M_PI * t_curr / t_i));
return final_lr;
}
T min_lr_;
T max_lr_;
int64_t period_;
T t_mult_;
T lr_shrink_;
};
// constantThenLinearWarmup: first use a constant multiplier
// and then ramp up to the global lr
template <typename T>
class ConstantThenLinearWarmupLearningRate : public LearningRateFunctor<T> {
public:
ConstantThenLinearWarmupLearningRate(
const T start_warmup_multiplier,
const int64_t constant_warmup_num_iter,
const int64_t linear_warmup_num_iter)
: constant_warmup_num_iter_(constant_warmup_num_iter),
linear_warmup_num_iter_(linear_warmup_num_iter),
constant_warmup_lr_(start_warmup_multiplier, constant_warmup_num_iter),
linear_warmup_lr_(start_warmup_multiplier, linear_warmup_num_iter) {}
T operator()(const int64_t iter) const override {
if (iter < constant_warmup_num_iter_) {
return constant_warmup_lr_(iter);
} else if (iter < constant_warmup_num_iter_ + linear_warmup_num_iter_) {
return linear_warmup_lr_(iter - constant_warmup_num_iter_);
} else {
return 1.0;
}
}
int64_t constant_warmup_num_iter_;
int64_t linear_warmup_num_iter_;
ConstantWarmupLearningRate<T> constant_warmup_lr_;
LinearWarmupLearningRate<T> linear_warmup_lr_;
};
// CompositeCosineLearningRate: first use a constant multiplier
// and then ramp up to the global lr, and then use a cosine learning rate
template <typename T>
class CompositeCosineLearningRate : public LearningRateFunctor<T> {
public:
CompositeCosineLearningRate(
const T start_warmup_multiplier,
const int64_t constant_warmup_num_iter,
const int64_t linear_warmup_num_iter,
const T cosine_min_lr,
const T cosine_max_lr,
const int64_t cosine_period,
const T consine_t_mult,
const T cosine_lr_shrink)
: constant_warmup_num_iter_(constant_warmup_num_iter),
linear_warmup_num_iter_(linear_warmup_num_iter),
constant_then_linear_warmup_lr_(
start_warmup_multiplier,
constant_warmup_num_iter,
linear_warmup_num_iter),
cosine_lr_(
cosine_min_lr,
cosine_max_lr,
cosine_period,
consine_t_mult,
cosine_lr_shrink) {}
T operator()(const int64_t iter) const override {
if (iter < constant_warmup_num_iter_ + linear_warmup_num_iter_) {
return constant_then_linear_warmup_lr_(iter);
}
return cosine_lr_(
iter - constant_warmup_num_iter_ - linear_warmup_num_iter_);
}
int64_t constant_warmup_num_iter_;
int64_t linear_warmup_num_iter_;
ConstantThenLinearWarmupLearningRate<T> constant_then_linear_warmup_lr_;
CosineLearningRate<T> cosine_lr_;
};
// CompositeCyclicalLearningRate: first use a constant multiplier
// and then ramp up to the global lr, and then use a cyclical learning rate
template <typename T>
class CompositeCyclicalLearningRate : public LearningRateFunctor<T> {
public:
CompositeCyclicalLearningRate(
const T base_lr,
const T start_warmup_multiplier,
const int64_t constant_warmup_num_iter,
const int64_t linear_warmup_num_iter,
const T cyclical_max_lr,
const int cyclical_step_size,
const T cyclical_decay)
: constant_warmup_num_iter_(constant_warmup_num_iter),
linear_warmup_num_iter_(linear_warmup_num_iter),
constant_then_linear_warmup_lr_(
start_warmup_multiplier,
constant_warmup_num_iter,
linear_warmup_num_iter),
cyclical_lr_(
base_lr,
cyclical_max_lr,
cyclical_step_size,
cyclical_decay) {}
T operator()(const int64_t iter) const override {
if (iter < constant_warmup_num_iter_ + linear_warmup_num_iter_) {
return constant_then_linear_warmup_lr_(iter);
}
return cyclical_lr_(
iter - constant_warmup_num_iter_ - linear_warmup_num_iter_);
}
int64_t constant_warmup_num_iter_;
int64_t linear_warmup_num_iter_;
ConstantThenLinearWarmupLearningRate<T> constant_then_linear_warmup_lr_;
CyclicalLearningRate<T> cyclical_lr_;
};
} // namespace caffe2
#endif // CAFFE2_SGD_LEARNING_RATE_FUNCTORS_H_
|