File: learning_rate_functors.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (490 lines) | stat: -rw-r--r-- 15,158 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#ifndef CAFFE2_SGD_LEARNING_RATE_FUNCTORS_H_
#define CAFFE2_SGD_LEARNING_RATE_FUNCTORS_H_

#include <cmath>
#include <list>
#include <map>

#ifdef _MSC_VER
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include <math.h>
#endif // _MSC_VER

#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"

namespace caffe2 {

// LearningRateFunctor is a functor that when fed with an iter number, produces
// the learning rate for the corresponding iteration.
template <typename T>
class LearningRateFunctor {
 public:
  virtual ~LearningRateFunctor() {}
  virtual T operator()(const int64_t iter) const = 0;
};

// Fixed: not changing the learning rate at all.
template <typename T>
class FixedLearningRate : public LearningRateFunctor<T> {
 public:
  T operator()(const int64_t /*iter*/) const override {
    return 1.;
  }
};

// Alter: alternatate learning rate with active_period and inactive_period.
// update for a duration of active_period and then stop for a duration of
// inactive_period if active_first, and vice versa
template <typename T>
class AlternateLearningRate : public LearningRateFunctor<T> {
 public:
  AlternateLearningRate(
      const int64_t active_period,
      const int64_t inactive_period,
      const bool active_first)
      : active_period_(active_period),
        inactive_period_(inactive_period),
        active_first_(active_first) {}
  T operator()(const int64_t iter) const override {
    if (iter % (active_period_ + inactive_period_) <
        (active_first_ ? active_period_ : inactive_period_)) {
      return active_first_ ? 1. : 0.;
    } else {
      return active_first_ ? 0. : 1.;
    };
  };

  int64_t active_period_;
  int64_t inactive_period_;
  bool active_first_;
};

// Step: return gamma ^ (floor(iter / step))
template <typename T>
class StepLearningRate : public LearningRateFunctor<T> {
 public:
  StepLearningRate(const int stepsize, const T gamma)
      : stepsize_(stepsize), gamma_(gamma) {}
  T operator()(const int64_t iter) const override {
    return std::pow(gamma_, static_cast<T>(iter / stepsize_));
  }

  int stepsize_;
  T gamma_;
};

// Exp: return gamma ^ iter
template <typename T>
class ExpLearningRate : public LearningRateFunctor<T> {
 public:
  explicit ExpLearningRate(const T gamma) : gamma_(gamma) {}
  T operator()(const int64_t iter) const override {
    return std::pow(gamma_, static_cast<T>(iter));
  }

  T gamma_;
};

// Gate: return multiplier_1 if before num_iter, else multiplier_2
template <typename T>
class GateLearningRate : public LearningRateFunctor<T> {
 public:
  GateLearningRate(
      const T multiplier_1,
      const T multiplier_2,
      const int64_t num_iter)
      : multiplier_1_(multiplier_1),
        multiplier_2_(multiplier_2),
        num_iter_(num_iter) {}
  T operator()(const int64_t iter) const override {
    if (iter >= int64_t(num_iter_)) {
      return T(multiplier_2_);
    }
    return T(multiplier_1_);
  }
  T multiplier_1_;
  T multiplier_2_;
  uint64_t num_iter_;
};

// Inv: return (1 + gamma * iter) ^ (-power)
template <typename T>
class InvLearningRate : public LearningRateFunctor<T> {
 public:
  InvLearningRate(const T gamma, const T power)
      : gamma_(gamma), power_(power) {}
  T operator()(const int64_t iter) const override {
    return std::pow(T(1) + gamma_ * iter, -power_);
  }
  T gamma_;
  T power_;
};

// Poly: return (1 - iter/max_iter) ^ (power)
template <typename T>
class PolyLearningRate : public LearningRateFunctor<T> {
 public:
  PolyLearningRate(const T power, const int64_t max_iter)
      : power_(power), max_iter_(max_iter) {}
  T operator()(const int64_t iter) const override {
    return std::pow(1 - T(iter) / T(max_iter_), power_);
  }
  T power_;
  uint64_t max_iter_;
};

// LinearWarmup: return max(iter/num_iter, 1)
template <typename T>
class LinearWarmupLearningRate : public LearningRateFunctor<T> {
 public:
  LinearWarmupLearningRate(const T start_multiplier, const int64_t num_iter)
      : start_multiplier_(start_multiplier), num_iter_(num_iter) {}
  T operator()(const int64_t iter) const override {
    if (iter >= int64_t(num_iter_)) {
      return 1.;
    }
    return start_multiplier_ +
        (1. - start_multiplier_) * T(iter) / T(num_iter_);
  }
  T start_multiplier_;
  uint64_t num_iter_;
};

// ConstantWarmup: return scale when iter < num_iter, and 1 otherwise
template <typename T>
class ConstantWarmupLearningRate : public LearningRateFunctor<T> {
 public:
  ConstantWarmupLearningRate(const T multiplier, const int64_t num_iter)
      : multiplier_(multiplier), num_iter_(num_iter) {}
  T operator()(const int64_t iter) const override {
    if (iter >= int64_t(num_iter_)) {
      return 1.;
    }
    return T(multiplier_);
  }
  T multiplier_;
  uint64_t num_iter_;
};

// ConstantWarmup: return scale when iter < num_iter, and 1 otherwise
template <typename T>
class PieceWarmupLearningRate : public LearningRateFunctor<T> {
 public:
  PieceWarmupLearningRate(
      const T m1,
      const int64_t n1,
      const T m2,
      const int64_t n2,
      const T m3)
      : m1_(m1), m2_(m2), m3_(m3), n1_(n1), n2_(n2){};

  T operator()(const int64_t iter) const override {
    if (iter < int64_t(n1_)) {
      return m1_;
    } else if (iter < int64_t(n2_)) {
      return m2_;
    }
    return m3_;
  }

  T m1_, m2_, m3_;
  uint64_t n1_, n2_;
};

// hill: the learning rate changes according to following 3 stages
// 1) linear warmup (increasing) at first num_iter steps from start_multiplier
// 2) inverse shrink (decreasing) afterwards (gamma, power)
// 3) lower bounded by end_multiplier
template <typename T>
class HillLearningRate : public LearningRateFunctor<T> {
 public:
  HillLearningRate(
      const int64_t num_iter,
      const T start_multiplier,
      const T gamma,
      const T power,
      const T end_multiplier)
      : linear_warmup_lr_(start_multiplier, num_iter),
        inv_lr_(gamma, power),
        num_iter_(num_iter),
        end_multiplier_(end_multiplier) {}
  T operator()(const int64_t iter) const override {
    if (iter < num_iter_) {
      return linear_warmup_lr_(iter);
    } else {
      return std::max(end_multiplier_, inv_lr_(iter - num_iter_));
    }
  }
  LinearWarmupLearningRate<T> linear_warmup_lr_;
  InvLearningRate<T> inv_lr_;
  int64_t num_iter_;
  T end_multiplier_;
};

// slope: the learning rate changes according to 2 stages
// 1) constantWarmup with multiplier_1
// 2) linearly shink to multiplier_2:
//  max{
//     multiplier_1 + (iter - num_iter_1) * (multiplier_2 - multiplier_1) / (num_iter_2 - num_iter_1),
//     multiplier_2
//  }
template <typename T>
class SlopeLearningRate : public LearningRateFunctor<T> {
 public:
  SlopeLearningRate(
      const int64_t num_iter_1,
      const T multiplier_1,
      const T num_iter_2,
      const T multiplier_2)
      : num_iter_1_(num_iter_1),
        multiplier_1_(multiplier_1),
        num_iter_2_(num_iter_2),
        multiplier_2_(multiplier_2) {}
  T operator()(const int64_t iter) const override {
    if (iter < num_iter_1_) {
      return multiplier_1_;
    } else {
      return std::max(
        multiplier_2_,
        multiplier_1_ + (iter - num_iter_1_) * (multiplier_2_ - multiplier_1_) / (num_iter_2_ - num_iter_1_)
      );
    }
  }
  int64_t num_iter_1_;
  T multiplier_1_;
  int64_t num_iter_2_;
  T multiplier_2_;
};

template <typename T>
class CompositeLearningRateItem {
 public:
  CompositeLearningRateItem(
      int64_t num_iter,
      float lr_scale,
      LearningRateFunctor<T>* policy)
      : num_iter_(num_iter), lr_scale_(lr_scale), policy_(policy) {}
  int64_t num_iter_;
  float lr_scale_;
  LearningRateFunctor<T>* policy_;
};

// composite: the learning policy changes according to current iteration #
template <typename T>
class CompositeLearningRate : public LearningRateFunctor<T> {
 public:
  CompositeLearningRate(
      const std::list<CompositeLearningRateItem<T>>& sub_policies) {
    TORCH_DCHECK_GT(sub_policies.size(), 0);
    int64_t num_iter_start = 1;
    for (auto it = sub_policies.begin(); it != sub_policies.end(); ++it) {
      TORCH_DCHECK_GT(it->num_iter_, 0);
      sub_policies_[num_iter_start].reset(it->policy_);
      sub_policy_lr_scales_[num_iter_start] = it->lr_scale_;
      num_iter_start += it->num_iter_;
    }
  }
  T operator()(const int64_t iter) const override {
    auto sub_policy = sub_policies_.upper_bound(iter);
    DCHECK(sub_policy != sub_policies_.begin());
    --sub_policy;
    auto sub_policy_lr_scale = sub_policy_lr_scales_.upper_bound(iter);
    DCHECK(sub_policy_lr_scale != sub_policy_lr_scales_.begin());
    --sub_policy_lr_scale;
    return ((*sub_policy->second)(iter)) * (sub_policy_lr_scale->second);
  }

 private:
  std::map<int64_t, std::unique_ptr<LearningRateFunctor<T>>> sub_policies_;
  std::map<int64_t, float> sub_policy_lr_scales_;
};

// Cyclical: return a learning rate with period 2 * stepsize and
// lower bound base_lr, upper bound max_lr.
// See https://arxiv.org/pdf/1506.01186.pdf
template <typename T>
class CyclicalLearningRate : public LearningRateFunctor<T> {
 public:
  CyclicalLearningRate(
      const T base_lr,
      const T max_lr,
      const int stepsize,
      const T decay)
      : base_lr_(base_lr),
        max_lr_(max_lr),
        stepsize_(stepsize),
        decay_(decay) {}
  T operator()(const int64_t iter) const override {
    int64_t cycle = static_cast<int>((iter / (2 * stepsize_)) + 1);
    T x = std::abs(static_cast<T>(iter) / stepsize_ - 2 * cycle + 1);
    return 1 +
        (T(std::abs(max_lr_)) / T(std::abs(base_lr_)) - 1) * std::max(T(0.0), (1 - x)) *
        std::pow(decay_, static_cast<int>(iter / (2 * stepsize_)));
  }
  T base_lr_;
  T max_lr_;
  int stepsize_;
  T decay_;
};

// Cosine: return a learning rate with a cosine schedule
// lower bound min_lr, upper bound max_lr.
// See https://arxiv.org/pdf/1608.03983.pdf
template <typename T>
class CosineLearningRate : public LearningRateFunctor<T> {
 public:
  CosineLearningRate(
      const T min_lr,
      const T max_lr,
      const int64_t period,
      const T t_mult,
      const T lr_shrink)
      : min_lr_(min_lr),
        max_lr_(max_lr),
        period_(period),
        t_mult_(t_mult),
        lr_shrink_(lr_shrink) {}
  T operator()(const int64_t iter) const override {
    T i, t_i, t_curr;
    if (t_mult_ != 1.0) {
      // the period is changed every time
      i = floor(
          log(1 - double(iter) / double(period_) * (1.0 - t_mult_)) /
          log(t_mult_));
      t_i = pow(t_mult_, i) * period_;
      t_curr = iter - (1.0 - pow(t_mult_, i)) / (1.0 - t_mult_) * period_;
    } else {
      // fixed period
      i = floor(double(iter) / double(period_));
      t_i = period_;
      t_curr = iter - t_i * i;
    }
    T lr_shrink = pow(lr_shrink_, i);
    T min_lr = min_lr_ * lr_shrink;
    T max_lr = max_lr_ * lr_shrink;
    T final_lr =
        min_lr + 0.5 * (max_lr - min_lr) * (1 + cos(M_PI * t_curr / t_i));
    return final_lr;
  }
  T min_lr_;
  T max_lr_;
  int64_t period_;
  T t_mult_;
  T lr_shrink_;
};

// constantThenLinearWarmup: first use a constant multiplier
// and then ramp up to the global lr
template <typename T>
class ConstantThenLinearWarmupLearningRate : public LearningRateFunctor<T> {
 public:
  ConstantThenLinearWarmupLearningRate(
      const T start_warmup_multiplier,
      const int64_t constant_warmup_num_iter,
      const int64_t linear_warmup_num_iter)
      : constant_warmup_num_iter_(constant_warmup_num_iter),
        linear_warmup_num_iter_(linear_warmup_num_iter),
        constant_warmup_lr_(start_warmup_multiplier, constant_warmup_num_iter),
        linear_warmup_lr_(start_warmup_multiplier, linear_warmup_num_iter) {}

  T operator()(const int64_t iter) const override {
    if (iter < constant_warmup_num_iter_) {
      return constant_warmup_lr_(iter);
    } else if (iter < constant_warmup_num_iter_ + linear_warmup_num_iter_) {
      return linear_warmup_lr_(iter - constant_warmup_num_iter_);
    } else {
      return 1.0;
    }
  }
  int64_t constant_warmup_num_iter_;
  int64_t linear_warmup_num_iter_;
  ConstantWarmupLearningRate<T> constant_warmup_lr_;
  LinearWarmupLearningRate<T> linear_warmup_lr_;
};

// CompositeCosineLearningRate: first use a constant multiplier
// and then ramp up to the global lr, and then use a cosine learning rate
template <typename T>
class CompositeCosineLearningRate : public LearningRateFunctor<T> {
 public:
  CompositeCosineLearningRate(
      const T start_warmup_multiplier,
      const int64_t constant_warmup_num_iter,
      const int64_t linear_warmup_num_iter,
      const T cosine_min_lr,
      const T cosine_max_lr,
      const int64_t cosine_period,
      const T consine_t_mult,
      const T cosine_lr_shrink)
      : constant_warmup_num_iter_(constant_warmup_num_iter),
        linear_warmup_num_iter_(linear_warmup_num_iter),
        constant_then_linear_warmup_lr_(
            start_warmup_multiplier,
            constant_warmup_num_iter,
            linear_warmup_num_iter),
        cosine_lr_(
            cosine_min_lr,
            cosine_max_lr,
            cosine_period,
            consine_t_mult,
            cosine_lr_shrink) {}

  T operator()(const int64_t iter) const override {
    if (iter < constant_warmup_num_iter_ + linear_warmup_num_iter_) {
      return constant_then_linear_warmup_lr_(iter);
    }
    return cosine_lr_(
        iter - constant_warmup_num_iter_ - linear_warmup_num_iter_);
  }

  int64_t constant_warmup_num_iter_;
  int64_t linear_warmup_num_iter_;
  ConstantThenLinearWarmupLearningRate<T> constant_then_linear_warmup_lr_;
  CosineLearningRate<T> cosine_lr_;
};

// CompositeCyclicalLearningRate: first use a constant multiplier
// and then ramp up to the global lr, and then use a cyclical learning rate
template <typename T>
class CompositeCyclicalLearningRate : public LearningRateFunctor<T> {
 public:
  CompositeCyclicalLearningRate(
      const T base_lr,
      const T start_warmup_multiplier,
      const int64_t constant_warmup_num_iter,
      const int64_t linear_warmup_num_iter,
      const T cyclical_max_lr,
      const int cyclical_step_size,
      const T cyclical_decay)
      : constant_warmup_num_iter_(constant_warmup_num_iter),
        linear_warmup_num_iter_(linear_warmup_num_iter),
        constant_then_linear_warmup_lr_(
            start_warmup_multiplier,
            constant_warmup_num_iter,
            linear_warmup_num_iter),
        cyclical_lr_(
            base_lr,
            cyclical_max_lr,
            cyclical_step_size,
            cyclical_decay) {}

  T operator()(const int64_t iter) const override {
    if (iter < constant_warmup_num_iter_ + linear_warmup_num_iter_) {
      return constant_then_linear_warmup_lr_(iter);
    }
    return cyclical_lr_(
        iter - constant_warmup_num_iter_ - linear_warmup_num_iter_);
  }

  int64_t constant_warmup_num_iter_;
  int64_t linear_warmup_num_iter_;
  ConstantThenLinearWarmupLearningRate<T> constant_then_linear_warmup_lr_;
  CyclicalLearningRate<T> cyclical_lr_;
};

} // namespace caffe2

#endif // CAFFE2_SGD_LEARNING_RATE_FUNCTORS_H_