1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#include "caffe2/sgd/learning_rate_op.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(LearningRate, LearningRateOp<float, CPUContext>);
OPERATOR_SCHEMA(LearningRate)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef&,
const vector<TensorShape>& in) {
vector<TensorShape> out(1);
out[0] = in[0];
return out;
})
.SetDoc(R"DOC(
Learning rate is a decreasing function of time. With low learning rates the
improvements will be linear. With high learning rates they will start to look
more exponential. Learning rate is controlled by the following arguments:
Required:
`iterations`
`base_lr`: base learning rate
`policy`: this controls how the learning rate is applied, options are:
`fixed`
`step`: uses `stepsize`, `gamma`
`exp`: uses `gamma`
`gate`: uses 'multiplier_1', 'multiplier_2', `num_iter``
`inv`: uses `gamma`, `power`
`linearWarmup`: uses `start_multiplier`, `num_iter`
`constantWarmup`: uses `multiplier`, `num_iter`
`alter`: uses `active_first`, `active_period`, `inactive_period`
`hill`: uses those in both `linearWarmup` and `inv`, plus `end_multiplier`
`composite`: uses `sub_policy_num_iters` and additional args with format
`cyclic`: uses `max_lr`, `stepsize`
`cosine`: uses `min_lr`, `max_lr`, `period`, `t_mult`, `lr_shrink`
`constantThenLinearWarmup`: uses `start_warmup_multiplier`, `constant_warmup_num_iter`, `linear_warmup_num_iter`
`compositeCyclical`: uses `start_warmup_multiplier`, `constant_warmup_num_iter`, `linear_warmup_num_iter`, `cyclical_max_lr`, `cyclical_step_size`, `cyclical_decay`
`compositeCosine`: uses `start_warmup_multiplier`, `constant_warmup_num_iter`, `linear_warmup_num_iter`, `cosine_max_lr`, `cosine_period`, `cosine_t_mult`, `cosine_lr_shrink`
sub_policy_{sub_policy_index}_{sub_policy_arg}, for example:
sub_policy_0_policy: "exp", sub_policy_0_gamma: 0.99,
sub_policy_0_lr_scale: 1.2
sub_policy_0_policy: "fixed", sub_policy_0_lr_scale: 1.0
sub_policy_num_iters: [1000, 1000]
Optional:
`stepsize`: defaults to 0
`max_lr`: defaults to 0.005
`gamma`: defaults to 0
`power`: defaults to 0
`num_iter`: defaults to 0
`start_multiplier`: defaults to 0
`multiplier`: defaults to 0.5
`multiplier_1`: defaults to 1
`multiplier_2`: defaults to 1
`m1`: defaults to 0.5, the first piece lr of piece warmup
`n1`: defaults to 0, iter threshold of the first piece lr
`m2`: defaults to 0.5, the second piece lr of piece warmup
`n2`: defaults to 0, iter threshold of the second piece lr
`m3`: defaults to 0.5, the third piece lr of piece warmup
`start_warmup_multiplier`: defaults to 0.1, part of constantThenLinearWarmup
`constant_warmup_num_iter`: defaults to 10000000, part of constantThenLinearWarmup and constantThenLinearWarmup
`linear_warmup_num_iter`: defaults to 10000000, part of constantThenLinearWarmup, CompositeCyclicalLRPolicy, CompositeCosineLRPolicy
`cyclical_max_lr`: defaults to 0.05, part of CompositeCyclicalLRPolicy
`cyclical_step_size`: defaults to 1000000, part of CompositeCyclicalLRPolicy
`cyclical_decay`: defaults to 1.0, part of CompositeCyclicalLRPolicy
`cosine_min_lr`:defaults to 0.01, part of CompositeCosineLRPolicy
`cosine_max_lr`:defaults to 0.05, part of CompositeCosineLRPolicy
`cosine_period`:defaults to 50, part of CompositeCosineLRPolicy
`cosine_t_mult`:defaults to 1.0, part of CompositeCosineLRPolicy
`cosine_lr_shrink`:defaults to 0.99, part of CompositeCosineLRPolicy
Usage:
train_net.LearningRate(*iterations*, "*label*", base_lr=*float*,
policy="policy_name", stepsize=*int*, gamma=*float*)
Example usage:
train_net.LearningRate(200, "LR", base_lr=-0.1,
policy="step", stepsize=20, gamma=0.9)
)DOC")
.Arg("base_lr", "(float, required) base learning rate")
.Arg("policy", "(float, default 1.0) strategy for gamma enforcement")
.Arg("power", "(float, default 1.0) used only for inv policy type")
.Arg("gamma", "(float, default 1.0) momentum of change")
.Arg("stepsize", "(float, default 1.0) sampling rate on iterations")
.Arg("max_lr", "(float, default 0.005) max learning rate")
.Arg("active_first", "(boolean, default True) in alter policy")
.Arg("active_period", "(int64_t, required) in alter policy")
.Arg("inactive_period", "(int64_t, required) in alter policy")
.Arg(
"max_iter",
"(int, default -1) maximum iterations in this training run")
.Arg(
"num_iter",
"(int, default 0) number of iterations over which to warmup lr")
.Arg(
"start_multiplier",
"(float, default 0) starting multiplier for learning rate")
.Arg(
"end_multiplier",
"(float, default 0) end multiplier for learning rate")
.Arg(
"multiplier",
"(float, default 0.5) constant multiplier for learning rate")
.Arg(
"multiplier_1",
"(float, default 1) start multiplier for learning rate")
.Arg("multiplier_2", "(float, default 1) end multiplier for learning rate")
.Arg(
"sub_policy_num_iters",
"(int array, default empty) number of iterations for each sub learning rate policy in composite policy")
.Arg("m1", "")
.Arg("n1", "")
.Arg("m2", "")
.Arg("n2", "")
.Arg("m3", "")
.Arg("start_warmup_multiplier", "defaults to 0.1")
.Arg("constant_warmup_num_iter", "defaults to 10000000")
.Arg("linear_warmup_num_iter", "defaults to 10000000")
.Arg(
"cyclical_max_lr",
"defaults to 0.05, part of CompositeCyclicalLRPolicy")
.Arg(
"cyclical_step_size",
"defaults to 1000000, part of CompositeCyclicalLRPolicy")
.Arg(
"cyclical_decay",
"defaults to 0.999, part of CompositeCyclicalLRPolicy")
.Arg("cosine_min_lr", "defaults to 0.01, part of CompositeCosineLRPolicy")
.Arg("cosine_max_lr", "defaults to 0.05, part of CompositeCosineLRPolicy")
.Arg("cosine_period", "defaults to 50, part of CompositeCosineLRPolicy")
.Arg("cosine_t_mult", "defaults to 1,0, part of CompositeCosineLRPolicy")
.Arg(
"cosine_lr_shrink",
"defaults to 0.99, part of CompositeCosineLRPolicy")
.Arg(
"num_iter_1",
"(int, default 0) number of iterations over which to warmup for slope policy")
.Arg(
"num_iter_2",
"(int, default 0) number of iterations over which to gradually gate for slope policy")
.Input(0, "input", "description needed")
.Output(0, "output", "description needed")
.DeviceInferenceFunction([](const OperatorDef& def) {
return std::make_pair(
std::vector<DeviceOption>{DeviceOption()},
std::vector<DeviceOption>{def.device_option()});
});
NO_GRADIENT(LearningRate);
} // namespace caffe2
using LearningRateOpFloatCPU =
caffe2::LearningRateOp<float, caffe2::CPUContext>;
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
LearningRate,
"_caffe2::LearningRate("
"Tensor iterations, "
"float base_lr,"
"str policy, "
"float? power = 1.0, "
"float? gamma = 1.0, "
"int? stepsize = 1, "
"float? max_lr = 0.005, "
"bool? active_first = True, "
"int? active_period = -1, "
"int? inactive_period = -1, "
"int? max_iter = -1, "
"int? num_iter = 0, "
"float? start_multiplier = 0, "
"float? end_multiplier = 0, "
"float? multiplier = 0.5, "
"float? multiplier_1 = 1.0, "
"float? multiplier_2 = 1.0, "
"int[]? sub_policy_num_iters = None, "
"float? m1 = 0.5, "
"float? n1 = 0, "
"float? m2 = 0.5, "
"float? n2 = 0, "
"float? m3 = 0.5, "
"float? start_warmup_multiplier = 0.1, "
"int? constant_warmup_num_iter = 10000000, "
"int? linear_warmup_num_iter = 10000000, "
"float? cyclical_max_lr = 0.05, "
"int? cyclical_step_size = 1000000, "
"float? cyclical_decay = 0.999, "
"float? cosine_min_lr = 0.01, "
"float? cosine_max_lr = 0.05, "
"int? cosine_period = 50, "
"float? cosine_t_mult = 1.0, "
"float? cosine_lr_shrink = 0.99, "
"float? decay = 1.0, "
"int? num_iter_1 = 0, "
"int? num_iter_2 = 0) -> Tensor output",
LearningRateOpFloatCPU);
|