1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#ifndef CAFFE2_SGD_LEARNING_RATE_OP_H_
#define CAFFE2_SGD_LEARNING_RATE_OP_H_
#include <cfloat>
#include <cmath>
#include "caffe2/core/context.h"
#include "caffe2/core/export_caffe2_op_to_c10.h"
#include <c10/util/irange.h>
#include "caffe2/core/operator.h"
#include "caffe2/sgd/learning_rate_functors.h"
C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(LearningRate);
namespace caffe2 {
template <typename T, class Context>
class LearningRateOp final : public Operator<Context> {
public:
template <class... Args>
LearningRateOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
functor_(nullptr),
base_lr_(this->template GetSingleArgument<float>("base_lr", FLT_MAX)) {
CAFFE_ENFORCE_NE(base_lr_, FLT_MAX, "Base learning rate must be set.");
const string policy =
this->template GetSingleArgument<string>("policy", "");
CAFFE_ENFORCE(policy.size(), "Must specify a learning rate policy.");
functor_.reset(createLearningRateFunctor(policy));
}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
int64_t iter =
OperatorBase::Input<Tensor>(0, CPU).template data<int64_t>()[0];
T learning_rate = base_lr_ * (*functor_)(iter);
// Write to output.
auto* output = Output(0);
output->Resize(vector<int64_t>());
context_.template CopyFromCPU<T>(
1, &learning_rate, Output(0)->template mutable_data<T>());
return true;
}
private:
unique_ptr<LearningRateFunctor<T>> functor_;
T base_lr_;
LearningRateFunctor<T>* createLearningRateFunctor(
const string& policy,
const string& arg_prefix = "") {
if (policy == "fixed") {
return new FixedLearningRate<T>();
} else if (policy == "alter") {
bool active_first = this->template GetSingleArgument<bool>(
arg_prefix + "active_first", true);
int64_t active_period = this->template GetSingleArgument<int64_t>(
arg_prefix + "active_period", -1);
int64_t inactive_period = this->template GetSingleArgument<int64_t>(
arg_prefix + "inactive_period", -1);
TORCH_DCHECK_GE(active_period, 0);
TORCH_DCHECK_GE(inactive_period, 0);
return new AlternateLearningRate<T>(
active_period, inactive_period, active_first);
} else if (policy == "hill") {
int64_t num_iter =
this->template GetSingleArgument<int64_t>(arg_prefix + "num_iter", 0);
TORCH_DCHECK_GT(num_iter, 0);
T start_multiplier = this->template GetSingleArgument<float>(
arg_prefix + "start_multiplier", 0.);
TORCH_DCHECK_GE(start_multiplier, 0); // start_multiplier in range [0, 1]
TORCH_DCHECK_LE(start_multiplier, 1);
T gamma =
this->template GetSingleArgument<float>(arg_prefix + "gamma", 0);
TORCH_DCHECK_GT(gamma, 0);
T power =
this->template GetSingleArgument<float>(arg_prefix + "power", 0);
TORCH_DCHECK_GT(power, 0);
T end_multiplier = this->template GetSingleArgument<float>(
arg_prefix + "end_multiplier", 0);
TORCH_DCHECK_GE(end_multiplier, 0); // end_multiplier in range [0, 1]
TORCH_DCHECK_LE(end_multiplier, 1);
return new HillLearningRate<T>(
num_iter, start_multiplier, gamma, power, end_multiplier);
} else if (policy == "slope") {
int64_t num_iter_1 = this->template GetSingleArgument<int64_t>(
arg_prefix + "num_iter_1", 0);
TORCH_DCHECK_GT(num_iter_1, 0);
T multiplier_1 = this->template GetSingleArgument<float>(
arg_prefix + "multiplier_1", 0.);
int64_t num_iter_2 = this->template GetSingleArgument<int64_t>(
arg_prefix + "num_iter_2", 0);
TORCH_DCHECK_GT(num_iter_1, 0);
T multiplier_2 = this->template GetSingleArgument<float>(
arg_prefix + "multiplier_2", 0.);
TORCH_DCHECK_GT(num_iter_2, num_iter_1);
return new SlopeLearningRate<T>(
num_iter_1, multiplier_1, num_iter_2, multiplier_2);
} else if (policy == "step") {
int stepsize =
this->template GetSingleArgument<int>(arg_prefix + "stepsize", 0);
T gamma =
this->template GetSingleArgument<float>(arg_prefix + "gamma", 0);
TORCH_DCHECK_GT(stepsize, 0);
TORCH_DCHECK_GT(gamma, 0);
return new StepLearningRate<T>(stepsize, gamma);
} else if (policy == "exp") {
T gamma =
this->template GetSingleArgument<float>(arg_prefix + "gamma", 0);
TORCH_DCHECK_GT(gamma, 0);
return new ExpLearningRate<T>(gamma);
} else if (policy == "gate") {
T multiplier_1 = this->template GetSingleArgument<float>(
arg_prefix + "multiplier_1", 1);
T multiplier_2 = this->template GetSingleArgument<float>(
arg_prefix + "multiplier_2", 1);
int num_iter =
this->template GetSingleArgument<int>(arg_prefix + "num_iter", 0);
// no constraint on the range of multiplier_1 and multiplier_2
return new GateLearningRate<T>(multiplier_1, multiplier_2, num_iter);
} else if (policy == "inv") {
T gamma =
this->template GetSingleArgument<float>(arg_prefix + "gamma", 0);
T power =
this->template GetSingleArgument<float>(arg_prefix + "power", 0);
TORCH_DCHECK_GT(gamma, 0);
TORCH_DCHECK_GT(power, 0);
return new InvLearningRate<T>(gamma, power);
} else if (policy == "poly") {
int max_iter =
this->template GetSingleArgument<int>(arg_prefix + "max_iter", -1);
T power =
this->template GetSingleArgument<float>(arg_prefix + "power", 0);
TORCH_DCHECK_GT(power, 0);
return new PolyLearningRate<T>(power, max_iter);
} else if (policy == "linearWarmup") {
T start_multiplier = this->template GetSingleArgument<float>(
arg_prefix + "start_multiplier", 0.);
int num_iter =
this->template GetSingleArgument<int>(arg_prefix + "num_iter", 0);
TORCH_DCHECK_GE(start_multiplier, 0);
return new LinearWarmupLearningRate<T>(start_multiplier, num_iter);
} else if (policy == "constantWarmup") {
T multiplier = this->template GetSingleArgument<float>(
arg_prefix + "multiplier", 0.5);
int num_iter =
this->template GetSingleArgument<int>(arg_prefix + "num_iter", 0);
TORCH_DCHECK_GT(multiplier, 0);
return new ConstantWarmupLearningRate<T>(multiplier, num_iter);
} else if (policy == "pieceWarmup") {
T m1 = this->template GetSingleArgument<float>(arg_prefix + "m1", 0.5);
int64_t n1 =
this->template GetSingleArgument<int64_t>(arg_prefix + "n1", 0);
T m2 = this->template GetSingleArgument<float>(arg_prefix + "m2", 0.5);
int64_t n2 =
this->template GetSingleArgument<int64_t>(arg_prefix + "n2", 0);
T m3 = this->template GetSingleArgument<float>(arg_prefix + "m3", 0.5);
return new PieceWarmupLearningRate<T>(m1, n1, m2, n2, m3);
} else if (policy == "composite") {
std::vector<int> sub_policy_num_iters =
this->template GetRepeatedArgument<int>("sub_policy_num_iters");
std::list<CompositeLearningRateItem<T>> sub_policies;
CAFFE_ENFORCE_GT(
sub_policy_num_iters.size(),
0,
"Must specify at least one sub learning rate policy.");
for (const auto i : c10::irange(sub_policy_num_iters.size())) {
CAFFE_ENFORCE_GT(
sub_policy_num_iters[i],
0,
"The number of iterations for sub learning rate policy should be positive.");
std::stringstream sub_policy_arg_prefix;
sub_policy_arg_prefix << "sub_policy_" << i << "_";
const string sub_policy_arg_prefix_str = sub_policy_arg_prefix.str();
const string sub_policy = this->template GetSingleArgument<string>(
sub_policy_arg_prefix_str + "policy", "");
if (sub_policy == "composite") {
CAFFE_THROW(
"Defining composite LR policy as a subpolicy of composite LR "
"policy is not allowed.");
}
const float scale_lr = this->template GetSingleArgument<float>(
sub_policy_arg_prefix_str + "lr_scale", 1.0);
sub_policies.push_back(CompositeLearningRateItem<T>(
sub_policy_num_iters[i],
scale_lr,
createLearningRateFunctor(sub_policy, sub_policy_arg_prefix_str)));
}
return new CompositeLearningRate<T>(sub_policies);
} else if (policy == "cyclical") {
T max_lr =
this->template GetSingleArgument<float>(arg_prefix + "max_lr", 0.005);
int stepsize =
this->template GetSingleArgument<int>(arg_prefix + "stepsize", 0);
T decay =
this->template GetSingleArgument<float>(arg_prefix + "decay", 1.0);
TORCH_DCHECK_GT(stepsize, 0);
TORCH_DCHECK_GE(max_lr, base_lr_);
return new CyclicalLearningRate<T>(base_lr_, max_lr, stepsize, decay);
} else if (policy == "constantThenLinearWarmup") {
T start_warmup_multiplier = this->template GetSingleArgument<float>(
arg_prefix + "start_warmup_multiplier", 0.1);
int64_t constant_warmup_num_iter = this->template GetSingleArgument<int64_t>(
arg_prefix + "constant_warmup_num_iter", 10000000);
int64_t linear_warmup_num_iter = this->template GetSingleArgument<int64_t>(
arg_prefix + "linear_warmup_num_iter", 10000000);
return new ConstantThenLinearWarmupLearningRate<T>(
start_warmup_multiplier,
constant_warmup_num_iter,
linear_warmup_num_iter);
} else if (policy == "compositeCyclical") {
T start_warmup_multiplier = this->template GetSingleArgument<float>(
arg_prefix + "start_warmup_multiplier", 0.1);
int64_t constant_warmup_num_iter = this->template GetSingleArgument<int64_t>(
arg_prefix + "constant_warmup_num_iter", 10000000);
int64_t linear_warmup_num_iter = this->template GetSingleArgument<int64_t>(
arg_prefix + "linear_warmup_num_iter", 10000000);
T cyclical_max_lr = this->template GetSingleArgument<float>(
arg_prefix + "cyclical_max_lr", 0.05);
int cyclical_step_size = this->template GetSingleArgument<int>(
arg_prefix + "cyclical_step_size", 1000000);
T cyclical_decay = this->template GetSingleArgument<float>(
arg_prefix + "cyclical_decay", 1.0);
TORCH_DCHECK_GE(cyclical_max_lr, base_lr_);
return new CompositeCyclicalLearningRate<T>(
base_lr_,
start_warmup_multiplier,
constant_warmup_num_iter,
linear_warmup_num_iter,
cyclical_max_lr,
cyclical_step_size,
cyclical_decay);
} else if (policy == "cosine") {
T max_lr =
this->template GetSingleArgument<float>(arg_prefix + "max_lr", 0.5);
T min_lr =
this->template GetSingleArgument<float>(arg_prefix + "min_lr", 0.1);
int64_t period =
this->template GetSingleArgument<int>(arg_prefix + "period", 50);
T t_mult =
this->template GetSingleArgument<float>(arg_prefix + "t_mult", 1.0);
T lr_shrink = this->template GetSingleArgument<float>(
arg_prefix + "lr_shrink", 0.99);
TORCH_DCHECK_GE(max_lr, min_lr);
return new CosineLearningRate<T>(
min_lr, max_lr, period, t_mult, lr_shrink);
} else if (policy == "compositeCosine") {
T start_warmup_multiplier = this->template GetSingleArgument<float>(
arg_prefix + "start_warmup_multiplier", 0.1);
int64_t constant_warmup_num_iter = this->template GetSingleArgument<int64_t>(
arg_prefix + "constant_warmup_num_iter", 10000000);
int64_t linear_warmup_num_iter = this->template GetSingleArgument<int64_t>(
arg_prefix + "linear_warmup_num_iter", 10000000);
T cosine_max_lr = this->template GetSingleArgument<float>(
arg_prefix + "cosine_max_lr", 0.5);
T cosine_min_lr = this->template GetSingleArgument<float>(
arg_prefix + "cosine_min_lr", 0.1);
int64_t cosine_period = this->template GetSingleArgument<int>(
arg_prefix + "cosine_period", 50);
T cosine_t_mult = this->template GetSingleArgument<float>(
arg_prefix + "cosine_t_mult", 1.0);
T cosine_lr_shrink = this->template GetSingleArgument<float>(
arg_prefix + "cosine_lr_shrink", 0.99);
TORCH_DCHECK_GE(cosine_max_lr, cosine_min_lr);
return new CompositeCosineLearningRate<T>(
start_warmup_multiplier,
constant_warmup_num_iter,
linear_warmup_num_iter,
cosine_min_lr,
cosine_max_lr,
cosine_period,
cosine_t_mult,
cosine_lr_shrink);
} else {
CAFFE_THROW("Unknown learning rate policy: ", policy);
return NULL;
}
}
};
} // namespace caffe2
#endif // CAFFE2_SGD_LEARNING_RATE_OP_H_
|