File: momentum_sgd_op_gpu.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (163 lines) | stat: -rw-r--r-- 4,412 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#include "caffe2/sgd/momentum_sgd_op.h"
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"

namespace caffe2 {

inline int CaffeGetBlocksSGD(const int N) {
  return std::max(
      (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS,
      // Use at least 1 block, since CUDA does not allow empty block
      1);
}
template <bool nesterov>
__global__ void MomentumSGDKernel(
    const int N,
    const float* g,
    const float* m,
    float* ng,
    float* nm,
    const float* lr,
    const float momentum,
    float* param);

template <>
__global__ void MomentumSGDKernel<true>(
    const int N,
    const float* g,
    const float* m,
    float* ng,
    float* nm,
    const float* lr,
    const float momentum,
    float* param) {
  const float LR = lr[0];
  CUDA_1D_KERNEL_LOOP(i, N) {
    const float mi = m[i];
    const float mi_new = momentum * mi + LR * g[i];
    nm[i] = mi_new;
    ng[i] = fmaf(momentum, mi_new - mi, mi_new);
    if (param != nullptr) {
      param[i] -= ng[i];
    }
  }
}

template <>
__global__ void MomentumSGDKernel<false>(
    const int N,
    const float* g,
    const float* m,
    float* ng,
    float* nm,
    const float* lr,
    const float momentum,
    float* param) {
  const float LR = lr[0];
  CUDA_1D_KERNEL_LOOP(i, N) {
    const float adjusted_gradient = LR * g[i] + momentum * m[i];
    nm[i] = adjusted_gradient;
    ng[i] = adjusted_gradient;
    if (param != nullptr) {
      param[i] -= adjusted_gradient;
    }
  }
}

template <>
void momentum_sgd_update<CUDAContext>(
    const int N,
    const float* g,
    const float* m,
    float* ng,
    float* nm,
    const float* lr,
    const float momentum,
    const bool nesterov,
    float* param,
    CUDAContext* context) {
  if (nesterov) {
    MomentumSGDKernel<true>
        <<<CaffeGetBlocksSGD(N),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context->cuda_stream()>>>(N, g, m, ng, nm, lr, momentum, param);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  } else {
    MomentumSGDKernel<false>
        <<<CaffeGetBlocksSGD(N),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context->cuda_stream()>>>(N, g, m, ng, nm, lr, momentum, param);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
}


template <typename SIndex>
__global__ void SparseMomentumSGDKernel(
    const size_t N,
    const size_t sz,
    const float momentum,
    const bool nesterov,
    float *param,
    float *param_mom,
    const SIndex *indices,
    const float *gradIn,
    float *gradOut,
    const float *lr)
{
  const float LR = lr[0];
  CUDA_1D_KERNEL_LOOP(i, N)
  {
    const size_t gradIdx = i;
    const SIndex index = indices[i / sz];
    const size_t paramIdx = index * sz + (i % sz);

    if (!nesterov)
    {
      const float adjusted_gradient = LR * gradIn[gradIdx] +
          momentum * param_mom[paramIdx];
      gradOut[gradIdx] = adjusted_gradient;
      param_mom[paramIdx] = adjusted_gradient;
      param[paramIdx] -= adjusted_gradient;
    } else {
      const float mom_old = param_mom[paramIdx];
      const float mom_new = LR * gradIn[gradIdx] + momentum * mom_old;
      param_mom[paramIdx] = mom_new;
      const float adjusted_gradient = (1 + momentum) * mom_new -
          momentum * mom_old;
      gradOut[gradIdx] = adjusted_gradient;
      param[paramIdx] -= adjusted_gradient;
    }
  }
}


// Specialization of DoRunWithType for CUDA
template <>
template <typename SIndex>
bool SparseMomentumSGDUpdateOp<float, CUDAContext>::DoRunWithType() {
  auto N = Input(GRAD).size();
  auto grad_slice_sz = Input(GRAD).size_from_dim(Input(INDICES).ndim());

  SparseMomentumSGDKernel<SIndex><<<
    CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0,
    context_.cuda_stream()>>>(
        N, grad_slice_sz,
        momentum_, nesterov_,
        Output(OUTPUT_PARAM)->template mutable_data<float>(),
        Output(OUTPUT_MOMENTUM)->template mutable_data<float>(),
        Input(INDICES).template data<SIndex>(),
        Input(GRAD).template data<float>(),
        Output(OUTPUT_GRAD)->template mutable_data<float>(),
        Input(LR).template data<float>());
  C10_CUDA_KERNEL_LAUNCH_CHECK();
  return true;
}

REGISTER_CUDA_OPERATOR(MomentumSGD, MomentumSGDOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(MomentumSGDUpdate, MomentumSGDUpdateOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(SparseMomentumSGDUpdate, SparseMomentumSGDUpdateOp<float, CUDAContext>);

}