1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
#pragma once
#include "caffe2/core/operator.h"
namespace caffe2 {
template <typename Context>
void storm_update(
const int N,
const float* paramIn,
const float* momentIn,
const float* gradSqSumIn,
const float* gradIn,
const float* lr,
float* paramOut,
float* momentOut,
float* gradSqSumOut,
const float momentum,
const float beta,
Context* /*context*/) {
float gradSqSumTmp = 0.0;
for (const auto i : c10::irange(N)) {
const float gi = gradIn[i];
gradSqSumTmp += gi * gi;
}
gradSqSumOut[0] = gradSqSumIn[0] + gradSqSumTmp;
const float nlr = lr[0] * std::pow(beta + gradSqSumOut[0], -1.0 / 3.0);
const float alpha = momentum * nlr * nlr;
for (const auto i : c10::irange(N)) {
const float gi = gradIn[i];
const float mi = momentIn[i];
float new_mi = momentOut[i] = gi + (1.0 - alpha) * (mi - gi);
paramOut[i] = paramIn[i] + nlr * new_mi;
}
}
template <class Context>
class StormOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
StormOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
OP_SINGLE_ARG(float, "momentum", momentum_, 10.0),
OP_SINGLE_ARG(float, "beta", beta_, 0.1) {}
bool RunOnDevice() override {
// Enforce shapes
CAFFE_ENFORCE_EQ(Input(GRAD).numel(), Input(PARAM).numel());
CAFFE_ENFORCE_EQ(Input(GRAD).numel(), Input(MOMENT).numel());
CAFFE_ENFORCE_EQ(Input(GRADSQSUM).numel(), 1);
CAFFE_ENFORCE_EQ(Input(LR).numel(), 1);
// Resize [potentially] out-of-place blobs
Output(OUTPUT_PARAM)->ResizeLike(Input(PARAM));
Output(OUTPUT_MOMENT)->ResizeLike(Input(MOMENT));
Output(OUTPUT_GRAGSQSUM)->ResizeLike(Input(GRADSQSUM));
storm_update<Context>(
Input(GRAD).numel(),
Input(PARAM).template data<float>(),
Input(MOMENT).template data<float>(),
Input(GRADSQSUM).template data<float>(),
Input(GRAD).template data<float>(),
Input(LR).template data<float>(),
Output(OUTPUT_PARAM)->template mutable_data<float>(),
Output(OUTPUT_MOMENT)->template mutable_data<float>(),
Output(OUTPUT_GRAGSQSUM)->template mutable_data<float>(),
momentum_,
beta_,
&context_);
return true;
}
protected:
const float momentum_;
const float beta_;
INPUT_TAGS(PARAM, MOMENT, GRADSQSUM, GRAD, LR);
OUTPUT_TAGS(OUTPUT_PARAM, OUTPUT_MOMENT, OUTPUT_GRAGSQSUM);
};
template <class Context>
class SparseStormOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
SparseStormOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
OP_SINGLE_ARG(float, "momentum", momentum_, 10.0),
OP_SINGLE_ARG(float, "beta", beta_, 0.1) {}
bool RunOnDevice() override {
// Enforce shapes
CAFFE_ENFORCE_EQ(Input(PARAM).numel(), Input(MOMENT).numel());
CAFFE_ENFORCE_EQ(Input(GRADSQSUM).numel(), 1);
CAFFE_ENFORCE_EQ(Input(LR).numel(), 1);
CAFFE_ENFORCE_EQ(
Input(PARAM).size_from_dim(1),
Input(GRAD).size_from_dim(Input(INDICES).dim()));
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <typename SIndex>
bool DoRunWithType() {
const auto* paramIn = Input(PARAM).template data<float>();
const auto* momentIn = Input(MOMENT).template data<float>();
const auto* gradSqSumIn = Input(GRADSQSUM).template data<float>();
const auto* gradIn = Input(GRAD).template data<float>();
const auto* indices = Input(INDICES).template data<SIndex>();
const auto* lr = Input(LR).template data<float>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<float>();
auto* momentOut = Output(OUTPUT_MOMENT)->template mutable_data<float>();
auto* gradSqSumOut =
Output(OUTPUT_GRAGSQSUM)->template mutable_data<float>();
auto n = Input(INDICES).numel();
if (n == 0) {
return true;
}
float gradSqSumTmp = 0.0;
for (const auto i : c10::irange(Input(GRAD).numel())) {
const float gi = gradIn[i];
gradSqSumTmp += gi * gi;
}
gradSqSumOut[0] = gradSqSumIn[0] + gradSqSumTmp;
const float nlr = lr[0] * std::pow(beta_ + gradSqSumOut[0], -1.0 / 3.0);
const float alpha = momentum_ * nlr * nlr;
const auto block_size = Input(GRAD).numel() / n;
for (const auto i : c10::irange(n)) {
auto idx = indices[i];
if (block_size == 1) {
const float gi = gradIn[i];
const float mi = momentIn[idx];
float new_mi = momentOut[idx] = gi + (1.0 - alpha) * (mi - gi);
paramOut[idx] = paramIn[idx] + nlr * new_mi;
} else {
auto offsetI = i * block_size;
auto offsetIdx = idx * block_size;
#ifndef NDEBUG
CAFFE_ENFORCE_GE(
Input(PARAM).numel(),
block_size + offsetIdx,
this->debug_def().input(PARAM),
", out of bound, idx:",
idx,
" for input i:",
i,
" and block size:",
block_size);
CAFFE_ENFORCE_GE(
Input(GRAD).numel(),
block_size + offsetI,
this->debug_def().input(GRAD),
", out of bound idx, idx:",
idx,
" for input i:",
i);
#endif
for (const auto j : c10::irange(block_size)) {
const float gi = gradIn[offsetI + j];
const float mi = momentIn[offsetIdx + j];
float new_mi = momentOut[offsetIdx + j] =
gi + (1.0 - alpha) * (mi - gi);
paramOut[offsetIdx + j] = paramIn[offsetIdx + j] + nlr * new_mi;
}
}
}
return true;
}
protected:
const float momentum_;
const float beta_;
INPUT_TAGS(PARAM, MOMENT, GRADSQSUM, GRAD, INDICES, LR);
OUTPUT_TAGS(OUTPUT_PARAM, OUTPUT_MOMENT, OUTPUT_GRAGSQSUM);
};
} // namespace caffe2
|