File: weight_scale_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (49 lines) | stat: -rw-r--r-- 1,795 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/**
 * Copyright (c) 2016-present, Facebook, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "caffe2/sgd/weight_scale_op.h"

namespace caffe2 {

REGISTER_CPU_OPERATOR(WeightScale, WeightScaleOp<CPUContext>);
OPERATOR_SCHEMA(WeightScale)
    .NumInputs(2)
    .NumOutputs(1)
    .AllowInplace({{0, 0}, {1, 1}})
    .DeviceInferenceFunction([](const OperatorDef& def) {
      auto op_device =
          def.has_device_option() ? def.device_option() : DeviceOption();
      vector<DeviceOption> in_dev(def.input_size(), op_device);
      vector<DeviceOption> out_dev(def.output_size(), op_device);
      // ITER input lives on CPU
      in_dev[1] = DeviceOption();
      return std::make_pair(in_dev, out_dev);
    })
    .SetDoc(R"DOC(
Every `stepsize` iterations, multiply the weights by a constant `scale`:
    nw = w * scale
)DOC")
    .Input(0, "w", "Current weights")
    .Input(1, "iter", "Training Iteration")
    .Output(0, "nw", "Updated weights")
    .Arg("stepsize", "Every iteration number to do weight scaling")
    .Arg(
        "upper_bound_iter",
        "After iter passes this bound, do not perform the weight rescaling")
    .Arg("scale", "The multiplicative factor applied to weights.");

SHOULD_NOT_DO_GRADIENT(WeightScale);
} // namespace caffe2