1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
#pragma once
#include "caffe2/core/operator.h"
namespace caffe2 {
template <typename Context>
void wngrad_update(
int N,
const float* w,
const float* g,
const float* h,
float* nw,
float* nh,
float epsilon,
const float* lr,
Context* /*context*/) {
for (const auto i : c10::irange(N)) {
float gi = g[i];
nw[i] = w[i] + lr[0] * gi / (h[0] + epsilon);
}
float nhTmp = 0.0;
for (const auto i : c10::irange(N)) {
float gi = g[i];
nhTmp += gi * gi;
}
nhTmp /= (h[0] + epsilon);
nh[0] = h[0] + nhTmp;
}
template <typename Context>
void wngrad_update_output_effective_lr(
int N,
const float* paramIn,
const float* gradIn,
const float* seqBIn,
float* paramOut,
float* seqBOut,
float* effectiveLROut,
float epsilon,
const float* lr,
Context* /*context*/) {
effectiveLROut[0] = lr[0] / (seqBIn[0] + epsilon);
float seqBTmp = 0.0;
for (const auto i : c10::irange(N)) {
float gi = gradIn[i];
seqBTmp += gi * gi;
}
seqBTmp /= (seqBIn[0] + epsilon);
seqBOut[0] = seqBIn[0] + seqBTmp;
for (const auto i : c10::irange(N)) {
float grad = gradIn[i];
paramOut[i] = paramIn[i] + effectiveLROut[0] * grad;
}
}
template <typename Context>
void wngrad_update_output_effective_lr_and_update(
int N,
const float* paramIn,
const float* gradIn,
const float* seqBIn,
float* paramOut,
float* seqBOut,
float* effectiveLROut,
float* updateOut,
float epsilon,
const float* lr,
Context* /*context*/) {
effectiveLROut[0] = lr[0] / (seqBIn[0] + epsilon);
float seqBTmp = 0.0;
for (const auto i : c10::irange(N)) {
float gi = gradIn[i];
seqBTmp += gi * gi;
}
seqBTmp /= (seqBIn[0] + epsilon);
seqBOut[0] = seqBIn[0] + seqBTmp;
for (const auto i : c10::irange(N)) {
float grad = gradIn[i];
float update = updateOut[i] = effectiveLROut[0] * grad;
paramOut[i] = paramIn[i] + update;
}
}
template <typename T, class Context>
class WngradOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
WngradOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
epsilon_(this->template GetSingleArgument<T>("epsilon", 1e-5f)) {}
bool RunOnDevice() override {
CAFFE_ENFORCE_EQ(
Input(GRAD).numel(),
Input(PARAM).numel(),
"PARAM size: ",
Input(PARAM).numel(),
", GRAD size: ",
Input(GRAD).numel(),
", SEQ_B size: ",
Input(SEQ_B).numel(),
", LR size: ",
Input(LR).numel());
Output(OUTPUT_PARAM)->ResizeLike(Input(PARAM));
Output(OUTPUT_SEQ_B)->ResizeLike(Input(SEQ_B));
if (OutputSize() == 2) {
wngrad_update<Context>(
Input(GRAD).numel(),
Input(PARAM).template data<T>(),
Input(GRAD).template data<T>(),
Input(SEQ_B).template data<T>(),
Output(OUTPUT_PARAM)->template mutable_data<T>(),
Output(OUTPUT_SEQ_B)->template mutable_data<T>(),
epsilon_,
Input(LR).template data<T>(),
&context_);
} else if (OutputSize() == 3) {
Output(OUTPUT_EFFECTIVE_LR)->ResizeLike(Input(SEQ_B));
wngrad_update_output_effective_lr<Context>(
Input(GRAD).numel(),
Input(PARAM).template data<T>(),
Input(GRAD).template data<T>(),
Input(SEQ_B).template data<T>(),
Output(OUTPUT_PARAM)->template mutable_data<T>(),
Output(OUTPUT_SEQ_B)->template mutable_data<T>(),
Output(OUTPUT_EFFECTIVE_LR)->template mutable_data<T>(),
epsilon_,
Input(LR).template data<T>(),
&context_);
} else {
Output(OUTPUT_EFFECTIVE_LR)->ResizeLike(Input(SEQ_B));
Output(OUTPUT_UPDATE)->ResizeLike(Input(GRAD));
wngrad_update_output_effective_lr_and_update<Context>(
Input(GRAD).numel(),
Input(PARAM).template data<T>(),
Input(GRAD).template data<T>(),
Input(SEQ_B).template data<T>(),
Output(OUTPUT_PARAM)->template mutable_data<T>(),
Output(OUTPUT_SEQ_B)->template mutable_data<T>(),
Output(OUTPUT_EFFECTIVE_LR)->template mutable_data<T>(),
Output(OUTPUT_UPDATE)->template mutable_data<T>(),
epsilon_,
Input(LR).template data<T>(),
&context_);
}
return true;
}
protected:
T epsilon_;
INPUT_TAGS(PARAM, SEQ_B, GRAD, LR);
OUTPUT_TAGS(OUTPUT_PARAM, OUTPUT_SEQ_B, OUTPUT_EFFECTIVE_LR, OUTPUT_UPDATE);
};
template <typename T, class Context>
class SparseWngradOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
SparseWngradOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
epsilon_(this->template GetSingleArgument<float>("epsilon", 1e-5f)) {}
bool RunOnDevice() override {
// Enforce shapes
CAFFE_ENFORCE_EQ(Input(SEQ_B).numel(), 1);
CAFFE_ENFORCE_EQ(Input(LR).numel(), 1);
CAFFE_ENFORCE_EQ(
Input(PARAM).size_from_dim(1),
Input(GRAD).size_from_dim(Input(INDICES).dim()));
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <typename SIndex>
bool DoRunWithType() {
const auto* lr = Input(LR).template data<T>();
const auto* indices = Input(INDICES).template data<SIndex>();
const auto* gradIn = Input(GRAD).template data<T>();
const auto* paramIn = Input(PARAM).template data<T>();
const auto* seqBIn = Input(SEQ_B).template data<T>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<T>();
auto* seqBOut = Output(OUTPUT_SEQ_B)->template mutable_data<T>();
auto n = Input(INDICES).numel();
if (n == 0) {
return true;
}
auto block_size = Input(GRAD).numel() / n;
for (const auto i : c10::irange(n)) {
auto idx = indices[i];
if (block_size == 1) {
float gi = gradIn[i];
paramOut[idx] = paramIn[idx] + lr[0] * gi / (seqBIn[0] + epsilon_);
} else {
auto offsetI = i * block_size;
auto offsetIdx = idx * block_size;
#ifndef NDEBUG
CAFFE_ENFORCE_GE(
Input(PARAM).numel(),
block_size + offsetIdx,
this->debug_def().input(PARAM),
", out of bound, idx:",
idx,
" for input i:",
i,
" and block size:",
block_size);
CAFFE_ENFORCE_GE(
Input(GRAD).numel(),
block_size + offsetI,
this->debug_def().input(GRAD),
", out of bound idx, idx:",
idx,
" for input i:",
i);
#endif
for (const auto j : c10::irange(block_size)) {
float gi = gradIn[offsetI + j];
paramOut[offsetIdx + j] =
paramIn[offsetIdx + j] + lr[0] * gi / (seqBIn[0] + epsilon_);
}
}
}
float seqBTmp = 0.0;
for (const auto i : c10::irange(Input(GRAD).numel())) {
float gi = gradIn[i];
seqBTmp += gi * gi;
}
seqBTmp /= seqBIn[0];
seqBOut[0] = seqBTmp + seqBIn[0];
return true;
}
protected:
T epsilon_;
INPUT_TAGS(PARAM, SEQ_B, INDICES, GRAD, LR);
OUTPUT_TAGS(OUTPUT_PARAM, OUTPUT_SEQ_B);
};
} // namespace caffe2
|