1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// YellowFin: An automatic tuner for momentum SGD
// (https://arxiv.org/abs/1706.03471)
// The YellowFinOp tunes learning rate and momentum and performs momentum SGD
// steps. The learning rate and momentum are separate for any matrix of
// parameters.
#pragma once
#include <cmath>
#include <cstring>
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context>
class YellowFinOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
YellowFinOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
curv_win_width_(
this->template GetSingleArgument<int>("curv_win_width", 20)),
nesterov_(this->template GetSingleArgument<int>("nesterov", false)),
zero_debias_(
this->template GetSingleArgument<bool>("zero_debias", true)),
epsilon_(this->template GetSingleArgument<T>("epsilon", 1e-6f)),
beta_(this->template GetSingleArgument<T>("beta", 0.999f)) {}
protected:
// GetLrMu and MomentumSgdUpdate have different implementations for GPU and
// CPU. All other methods are generic.
void GetLrMu();
void MomentumSgdUpdate();
void AfterApply() {
// g
MovingAverage(D_, grad_, g_avg_, g_avg_out_, g_deb_);
// g2
math::Mul(D_, grad_, grad_, aux_vector_, &context_);
MovingAverage(D_, aux_vector_, g2_avg_, g2_avg_out_, g2_deb_);
// g_norm2
math::Dot(D_, grad_, grad_, g_norm2_, &context_);
math::Maximum(1, epsilon_, g_norm2_, g_norm2_, &context_);
MovingAverage(1, g_norm2_, g_norm2_avg_, g_norm2_avg_out_, g_norm2_deb_);
// g_norm
math::Sqrt(1, g_norm2_, g_norm_, &context_);
MovingAverage(1, g_norm_, g_norm_avg_, g_norm_avg_out_, g_norm_deb_);
math::Maximum(1, epsilon_, g_norm_deb_, g_norm_deb_, &context_);
// Curvature range: g_norm2_min, g_norm2_max
math::CopyVector(curv_win_width_, curv_win_, curv_win_out_, &context_);
T* curv_win_cell = curv_win_out_ + (iter_ - 1) % curv_win_width_;
math::Log(1, g_norm2_, curv_win_cell, &context_);
int valid_end = std::min(curv_win_width_, iter_);
math::ReduceMin(
valid_end, curv_win_out_, g_norm2_min_, &scratch_tensor_, &context_);
math::ReduceMax(
valid_end, curv_win_out_, g_norm2_max_, &scratch_tensor_, &context_);
MovingAverage(
1,
g_norm2_min_,
g_norm2_min_avg_,
g_norm2_min_avg_out_,
g_norm2_min_deb_);
MovingAverage(
1,
g_norm2_max_,
g_norm2_max_avg_,
g_norm2_max_avg_out_,
g_norm2_max_deb_);
math::Exp(1, g_norm2_min_deb_, g_norm2_min_deb_, &context_);
math::Exp(1, g_norm2_max_deb_, g_norm2_max_deb_, &context_);
math::Maximum(1, epsilon_, g_norm2_min_deb_, g_norm2_min_deb_, &context_);
math::Maximum(1, epsilon_, g_norm2_max_deb_, g_norm2_max_deb_, &context_);
// Gradient variance
math::Dot(D_, g_deb_, g_deb_, aux_scalar_, &context_);
math::Sub(1, g_norm2_deb_, aux_scalar_, variance_, &context_);
math::Maximum(1, epsilon_, variance_, variance_, &context_);
// Distance to opt
math::Div(1, g_norm_avg_out_, g_norm2_avg_out_, distance_, &context_);
MovingAverage(
1, distance_, distance_avg_, distance_avg_out_, distance_deb_);
if (iter_ > 1) {
GetLrMu();
}
}
void MovingAverage(
const int N,
const T* elt,
const T* avg,
T* new_avg,
T* debias_avg) {
const T one = 1;
math::Scale(N, beta_, avg, new_avg, &context_);
math::Axpy(N, one - beta_, elt, new_avg, &context_);
math::Scale(N, debias_factor_, new_avg, debias_avg, &context_);
}
T ZeroDebiasFactor() {
if (zero_debias_) {
const T one = 1;
return one / (one - std::pow(beta_, iter_));
} else {
return 1;
}
}
public:
bool RunOnDevice() override {
// Iter live on the CPU
#define CAFFE2_YF_READ_INPUT(INPUT_NAME, VAR_NAME) \
const auto& VAR_NAME##_tensor = Input(INPUT_NAME); \
VAR_NAME##_ = VAR_NAME##_tensor.template data<T>();
CAFFE2_YF_READ_INPUT(PARAM, param)
CAFFE2_YF_READ_INPUT(MOMENT, moment)
CAFFE2_YF_READ_INPUT(LR_AVG, lr_avg)
CAFFE2_YF_READ_INPUT(MU_AVG, mu_avg)
CAFFE2_YF_READ_INPUT(CURV_WIN, curv_win)
CAFFE2_YF_READ_INPUT(G_AVG, g_avg)
CAFFE2_YF_READ_INPUT(G2_AVG, g2_avg)
CAFFE2_YF_READ_INPUT(SCALARS_MEMORY, scalars_memory)
CAFFE2_YF_READ_INPUT(GRAD, grad)
#undef CAFFE2_YF_READ_OUTPUT
CAFFE_ENFORCE(OperatorBase::InputIsTensorType(ITER, CPU));
CAFFE_ENFORCE_EQ(lr_avg_tensor.numel(), 1);
CAFFE_ENFORCE_EQ(mu_avg_tensor.numel(), 1);
CAFFE_ENFORCE_EQ(param_tensor.dim(), moment_tensor.dim());
CAFFE_ENFORCE_EQ(param_tensor.dim(), g_avg_tensor.dim());
CAFFE_ENFORCE_EQ(param_tensor.dim(), g2_avg_tensor.dim());
CAFFE_ENFORCE_EQ(param_tensor.dim(), grad_tensor.dim());
for (const auto i : c10::irange(param_tensor.dim())) {
CAFFE_ENFORCE_EQ(param_tensor.dim32(i), moment_tensor.dim32(i));
CAFFE_ENFORCE_EQ(param_tensor.dim32(i), g_avg_tensor.dim32(i));
CAFFE_ENFORCE_EQ(param_tensor.dim32(i), g2_avg_tensor.dim32(i));
CAFFE_ENFORCE_EQ(param_tensor.dim32(i), grad_tensor.dim32(i));
}
iter_ = OperatorBase::Input<Tensor>(ITER, CPU).template data<int64_t>()[0];
D_ = param_tensor.numel();
// Input data - persistent memory for internal scalars
// Note: Memory for these scalars is being allocated during initialization
// of the network. If you want to add / remove a scalar, make a
// suitable change of memory size in the initialization.
const T* memory_it = scalars_memory_ - 1;
g_norm_avg_ = ++memory_it;
g_norm2_avg_ = ++memory_it;
g_norm2_min_avg_ = ++memory_it;
g_norm2_max_avg_ = ++memory_it;
distance_avg_ = ++memory_it;
// Output data
#define CAFFE2_YF_READ_OUTPUT(OUTPUT_NAME, VAR_NAME) \
auto VAR_NAME##_out_tensor = \
Output(OUTPUT_##OUTPUT_NAME, VAR_NAME##_tensor.sizes(), at::dtype<T>()); \
VAR_NAME##_out_ = VAR_NAME##_out_tensor->template mutable_data<T>();
CAFFE2_YF_READ_OUTPUT(PARAM, param)
CAFFE2_YF_READ_OUTPUT(MOMENT, moment)
CAFFE2_YF_READ_OUTPUT(LR_AVG, lr_avg)
CAFFE2_YF_READ_OUTPUT(MU_AVG, mu_avg)
CAFFE2_YF_READ_OUTPUT(CURV_WIN, curv_win)
CAFFE2_YF_READ_OUTPUT(G_AVG, g_avg)
CAFFE2_YF_READ_OUTPUT(G2_AVG, g2_avg)
CAFFE2_YF_READ_OUTPUT(SCALARS_MEMORY, scalars_memory)
#undef CAFFE2_YF_READ_OUTPUT
T* out_memory_it = scalars_memory_out_ - 1;
g_norm_avg_out_ = ++out_memory_it;
g_norm2_avg_out_ = ++out_memory_it;
g_norm2_min_avg_out_ = ++out_memory_it;
g_norm2_max_avg_out_ = ++out_memory_it;
distance_avg_out_ = ++out_memory_it;
#define CAFFE2_YF_INIT_VECTOR(NAME) \
ReinitializeTensor(&NAME##_tensor_, {D_}, at::dtype<T>().device(Context::GetDeviceType())); \
NAME##_ = NAME##_tensor_.template mutable_data<T>();
CAFFE2_YF_INIT_VECTOR(aux_vector)
CAFFE2_YF_INIT_VECTOR(g_deb)
CAFFE2_YF_INIT_VECTOR(g2_deb)
CAFFE2_YF_INIT_VECTOR(g_deb2)
#undef CAFFE2_YF_INIT_VECTOR
#define CAFFE2_YF_INIT_SCALAR(NAME) \
ReinitializeTensor(&NAME##_tensor_, {1}, at::dtype<T>().device(Context::GetDeviceType())); \
NAME##_ = NAME##_tensor_.template mutable_data<T>();
CAFFE2_YF_INIT_SCALAR(aux_scalar)
CAFFE2_YF_INIT_SCALAR(distance)
CAFFE2_YF_INIT_SCALAR(distance_deb)
CAFFE2_YF_INIT_SCALAR(g_norm)
CAFFE2_YF_INIT_SCALAR(g_norm_deb)
CAFFE2_YF_INIT_SCALAR(g_norm2)
CAFFE2_YF_INIT_SCALAR(g_norm2_max)
CAFFE2_YF_INIT_SCALAR(g_norm2_max_deb)
CAFFE2_YF_INIT_SCALAR(g_norm2_min)
CAFFE2_YF_INIT_SCALAR(g_norm2_min_deb)
CAFFE2_YF_INIT_SCALAR(g_norm2_deb)
CAFFE2_YF_INIT_SCALAR(lr)
CAFFE2_YF_INIT_SCALAR(lr_deb)
CAFFE2_YF_INIT_SCALAR(mu_deb)
CAFFE2_YF_INIT_SCALAR(mu)
CAFFE2_YF_INIT_SCALAR(variance)
#undef CAFFE2_YF_INIT_SCALAR
debias_factor_ = ZeroDebiasFactor();
MomentumSgdUpdate();
AfterApply();
return true;
}
protected:
int curv_win_width_;
bool nesterov_;
bool zero_debias_;
T epsilon_;
T beta_;
T debias_factor_;
int D_;
// Temporary memory on device, listed all variables used in calculations
#define CAFFE2_YF_DEFINE_TENSOR(NAME) \
Tensor NAME##_tensor_; \
T* NAME##_;
CAFFE2_YF_DEFINE_TENSOR(aux_vector)
CAFFE2_YF_DEFINE_TENSOR(g_deb)
CAFFE2_YF_DEFINE_TENSOR(g2_deb)
CAFFE2_YF_DEFINE_TENSOR(g_deb2)
CAFFE2_YF_DEFINE_TENSOR(aux_scalar)
CAFFE2_YF_DEFINE_TENSOR(distance)
CAFFE2_YF_DEFINE_TENSOR(distance_deb)
CAFFE2_YF_DEFINE_TENSOR(g_norm)
CAFFE2_YF_DEFINE_TENSOR(g_norm_deb)
CAFFE2_YF_DEFINE_TENSOR(g_norm2)
CAFFE2_YF_DEFINE_TENSOR(g_norm2_deb)
CAFFE2_YF_DEFINE_TENSOR(g_norm2_max)
CAFFE2_YF_DEFINE_TENSOR(g_norm2_max_deb)
CAFFE2_YF_DEFINE_TENSOR(g_norm2_min)
CAFFE2_YF_DEFINE_TENSOR(g_norm2_min_deb)
CAFFE2_YF_DEFINE_TENSOR(lr)
CAFFE2_YF_DEFINE_TENSOR(lr_deb)
CAFFE2_YF_DEFINE_TENSOR(mu)
CAFFE2_YF_DEFINE_TENSOR(mu_deb)
CAFFE2_YF_DEFINE_TENSOR(variance)
Tensor scratch_tensor_{Context::GetDeviceType()};
#undef CAFFE2_YF_DEFINE_TENSOR
// Input tensors' data
const T* param_;
const T* moment_;
const T* lr_avg_;
const T* mu_avg_;
const T* curv_win_;
const T* g_avg_;
const T* g2_avg_;
const T* scalars_memory_;
const T* grad_;
int iter_;
// Scalar data from scalars_memory_ input tensor
const T* g_norm_avg_;
const T* g_norm2_avg_;
const T* g_norm2_min_avg_;
const T* g_norm2_max_avg_;
const T* distance_avg_;
// Output tensors' data
T* param_out_;
T* moment_out_;
T* lr_avg_out_;
T* mu_avg_out_;
T* curv_win_out_;
T* g_avg_out_;
T* g2_avg_out_;
T* scalars_memory_out_;
// Scalar data from scalars_memory_ output tensor
T* g_norm_avg_out_;
T* g_norm2_avg_out_;
T* g_norm2_min_avg_out_;
T* g_norm2_max_avg_out_;
T* distance_avg_out_;
INPUT_TAGS(
PARAM,
MOMENT,
LR_AVG,
MU_AVG,
CURV_WIN,
G_AVG,
G2_AVG,
SCALARS_MEMORY,
GRAD,
ITER);
OUTPUT_TAGS(
OUTPUT_PARAM,
OUTPUT_MOMENT,
OUTPUT_LR_AVG,
OUTPUT_MU_AVG,
OUTPUT_CURV_WIN,
OUTPUT_G_AVG,
OUTPUT_G2_AVG,
OUTPUT_SCALARS_MEMORY);
};
} // namespace caffe2
|