1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
#include "caffe2/core/context.h"
#include "caffe2/core/timer.h"
#include "caffe2/operators/conv_op.h"
#include "caffe2/operators/conv_pool_op_base.h"
#include "c10/macros/Macros.h"
#ifdef __ARM_NEON__
#include <arm_neon.h>
#endif
C10_DEFINE_bool(caffe2_profile_depthwise, false, "");
namespace caffe2 {
namespace {
struct DepthwiseArgs {
// Input layer dimensions
int batch{0};
int in_rows{0};
int in_cols{0};
int stride{0};
int pad_rows{0};
int pad_cols{0};
// Output layer dimensions
int out_rows{0};
int out_cols{0};
};
#ifdef __ARM_NEON__
static inline void winograd_f2k3_input_transform_inplace__neon(
float32x4_t* d0,
float32x4_t* d1,
float32x4_t* d2,
float32x4_t* d3) {
//*d7 = wd7;
float32x4_t wd0 = *d0 - *d2;
float32x4_t wd1 = *d1 + *d2;
float32x4_t wd2 = -*d1 + *d2;
float32x4_t wd3 = *d1 - *d3;
*d0 = wd0;
*d1 = wd1;
*d2 = wd2;
*d3 = wd3;
}
static inline void winograd_f2k3_output_transform_inplace__neon(
float32x4_t* m0,
float32x4_t* m1,
float32x4_t* m2,
float32x4_t* m3) {
*m0 = *m0 + *m1 + *m2;
*m1 = *m1 - *m2 - *m3;
}
static inline float32x4_t
vmuladdq_f32(float32x4_t c, float32x4_t a, float32x4_t b) {
#if defined(__aarch64__)
return vfmaq_f32(c, a, b);
#else
return vmlaq_f32(c, a, b);
#endif
}
static inline float32x4_t
vmulsubq_f32(float32x4_t c, float32x4_t a, float32x4_t b) {
#if defined(__aarch64__)
return vfmsq_f32(c, a, b);
#else
return vmlsq_f32(c, a, b);
#endif
}
static inline void winograd_f2k3_kernel_transform__neon(
const float32x4_t g0,
const float32x4_t g1,
const float32x4_t g2,
float32x4_t* transform0,
float32x4_t* transform1,
float32x4_t* transform2,
float32x4_t* transform3) {
const float32x4_t const_half = vdupq_n_f32(0.5f);
float32x4_t half_g0_plus_g2 = const_half * (g0 + g2);
*transform0 = g0;
*transform1 = vmuladdq_f32(half_g0_plus_g2, const_half, g1);
*transform2 = vmulsubq_f32(half_g0_plus_g2, const_half, g1);
*transform3 = g2;
}
static inline float32x4x4_t v4f_transpose4x4__neon(float32x4x4_t m) {
float32x4x4_t ret;
vst4q_f32((float*)(&ret), m);
return ret;
}
void runDepthwise3x3Conv(
const DepthwiseArgs& args,
const float* input,
const float* kernel,
const float* bias,
float* output) {
const float32x4_t vbias = vsetq_lane_f32(*bias, vdupq_n_f32(0.0), 1);
float32x4x4_t kernel_tile;
{
const float32x4_t g0 = vld1q_f32(kernel);
const float32x4_t g1 = vld1q_f32(kernel + 3);
// g2[3] is junk
const float32x4_t g2 =
vextq_f32(vld1q_f32(kernel + 5), vld1q_f32(kernel + 5), 1);
float32x4x4_t w;
winograd_f2k3_kernel_transform__neon(
g0, g1, g2, &w.val[0], &w.val[1], &w.val[2], &w.val[3]);
w = v4f_transpose4x4__neon(w);
winograd_f2k3_kernel_transform__neon(
w.val[0],
w.val[1],
w.val[2],
&kernel_tile.val[0],
&kernel_tile.val[1],
&kernel_tile.val[2],
&kernel_tile.val[3]);
}
#define TILE \
winograd_f2k3_input_transform_inplace__neon( \
&input_tile.val[0], \
&input_tile.val[1], \
&input_tile.val[2], \
&input_tile.val[3]); \
input_tile = v4f_transpose4x4__neon(input_tile); \
winograd_f2k3_input_transform_inplace__neon( \
&input_tile.val[0], \
&input_tile.val[1], \
&input_tile.val[2], \
&input_tile.val[3]); \
\
for (int row = 0; row < 4; ++row) { \
input_tile.val[row] = \
vmulq_f32(input_tile.val[row], kernel_tile.val[row]); \
} \
\
input_tile.val[1] = input_tile.val[1] + vbias; \
winograd_f2k3_output_transform_inplace__neon( \
&input_tile.val[0], \
&input_tile.val[1], \
&input_tile.val[2], \
&input_tile.val[3]); \
input_tile = v4f_transpose4x4__neon(input_tile); \
winograd_f2k3_output_transform_inplace__neon( \
&input_tile.val[0], \
&input_tile.val[1], \
&input_tile.val[2], \
&input_tile.val[3])
// Non-padded regime.
// Iterate over non-padded output tiles.
// TODO: avoid spilling W by breaking out the non-padded vs padded case.
for (int oth = 0; oth < (args.out_rows + 1) / 2; ++oth) {
for (int otw = 0; otw < (args.out_cols + 1) / 2; ++otw) {
// load input tile for [oth, otw];
int ih = oth * 2 - args.pad_rows;
int iw = otw * 2 - args.pad_cols;
// fast-path, all accesses in-bounds
if (C10_LIKELY(
ih >= 0 && iw >= 0 && ih + 3 < args.in_rows &&
iw + 3 < args.in_cols && 2 * oth + 1 < args.out_rows &&
2 * otw + 1 < args.out_cols)) {
float32x4x4_t input_tile;
for (int row = 0; row < 4; ++row) {
input_tile.val[row] =
vld1q_f32(input + (ih + row) * args.in_cols + iw);
}
TILE;
for (size_t row = 0; row < 2; ++row) {
vst1_f32(
output + (oth * 2 + row) * args.out_cols + otw * 2,
vget_low_f32(input_tile.val[row]));
}
} else {
float block[4][4];
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
if (ih + row >= 0 && iw + col >= 0 && ih + row < args.in_rows &&
iw + col < args.in_cols) {
block[row][col] = input[(ih + row) * args.in_cols + iw + col];
} else {
block[row][col] = 0.0;
}
}
}
float32x4x4_t input_tile;
for (int row = 0; row < 4; ++row) {
input_tile.val[row] = vld1q_f32(&block[row][0]);
}
TILE;
float oblock[2][2];
for (int row = 0; row < 2; ++row) {
vst1_f32(&oblock[row][0], vget_low_f32(input_tile.val[row]));
}
for (int row = 0; row < 2; ++row) {
for (int col = 0; col < 2; ++col) {
if (2 * oth + row < args.out_rows &&
2 * otw + col < args.out_cols) {
output[(2 * oth + row) * args.out_cols + 2 * otw + col] =
oblock[row][col];
}
}
}
}
}
}
}
#else
#define PSIMD_INTRINSIC inline static __attribute__((__always_inline__))
typedef float psimd_f32 __attribute__((vector_size(16), aligned(1)));
typedef int psimd_s32 __attribute__((__vector_size__(16)));
PSIMD_INTRINSIC void psimd_store_f32(void* address, psimd_f32 value) {
*((psimd_f32*)address) = value;
}
PSIMD_INTRINSIC psimd_f32 psimd_load_f32(const void* address) {
return *((const psimd_f32*)address);
}
PSIMD_INTRINSIC psimd_f32 psimd_splat_f32(float c) {
return (psimd_f32){c, c, c, c};
}
#if defined(__clang__)
PSIMD_INTRINSIC psimd_f32 psimd_interleave_lo_f32(psimd_f32 a, psimd_f32 b) {
return __builtin_shufflevector(a, b, 0, 4 + 0, 1, 4 + 1);
}
PSIMD_INTRINSIC psimd_f32 psimd_interleave_hi_f32(psimd_f32 a, psimd_f32 b) {
return __builtin_shufflevector(a, b, 2, 4 + 2, 3, 4 + 3);
}
PSIMD_INTRINSIC psimd_f32 psimd_concat_lo_f32(psimd_f32 a, psimd_f32 b) {
return __builtin_shufflevector(a, b, 0, 1, 4 + 0, 4 + 1);
}
PSIMD_INTRINSIC psimd_f32 psimd_concat_hi_f32(psimd_f32 a, psimd_f32 b) {
return __builtin_shufflevector(a, b, 2, 3, 4 + 2, 4 + 3);
}
#else
PSIMD_INTRINSIC psimd_f32 psimd_interleave_lo_f32(psimd_f32 a, psimd_f32 b) {
return __builtin_shuffle(a, b, (psimd_s32){0, 4 + 0, 1, 4 + 1});
}
PSIMD_INTRINSIC psimd_f32 psimd_interleave_hi_f32(psimd_f32 a, psimd_f32 b) {
return __builtin_shuffle(a, b, (psimd_s32){2, 4 + 2, 3, 4 + 3});
}
PSIMD_INTRINSIC psimd_f32 psimd_concat_lo_f32(psimd_f32 a, psimd_f32 b) {
return __builtin_shuffle(a, b, (psimd_s32){0, 1, 4 + 0, 4 + 1});
}
PSIMD_INTRINSIC psimd_f32 psimd_concat_hi_f32(psimd_f32 a, psimd_f32 b) {
return __builtin_shuffle(a, b, (psimd_s32){2, 3, 4 + 2, 4 + 3});
}
#endif
static inline void psimd_transpose4x4_f32(
const psimd_f32 row0,
const psimd_f32 row1,
const psimd_f32 row2,
const psimd_f32 row3,
psimd_f32* col0,
psimd_f32* col1,
psimd_f32* col2,
psimd_f32* col3) {
const psimd_f32 row01lo = psimd_interleave_lo_f32(row0, row1);
const psimd_f32 row01hi = psimd_interleave_hi_f32(row0, row1);
const psimd_f32 row23lo = psimd_interleave_lo_f32(row2, row3);
const psimd_f32 row23hi = psimd_interleave_hi_f32(row2, row3);
*col0 = psimd_concat_lo_f32(row01lo, row23lo);
*col1 = psimd_concat_hi_f32(row01lo, row23lo);
*col2 = psimd_concat_lo_f32(row01hi, row23hi);
*col3 = psimd_concat_hi_f32(row01hi, row23hi);
}
static inline void winograd_f2k3_input_transform(
const psimd_f32 d0,
const psimd_f32 d1,
const psimd_f32 d2,
const psimd_f32 d3,
psimd_f32* transform0,
psimd_f32* transform1,
psimd_f32* transform2,
psimd_f32* transform3) {
*transform0 = d0 - d2;
*transform1 = d1 + d2;
*transform2 = -d1 + d2;
*transform3 = d1 - d3;
}
static inline void winograd_f2k3_kernel_transform(
const psimd_f32 g0,
const psimd_f32 g1,
const psimd_f32 g2,
psimd_f32* transform0,
psimd_f32* transform1,
psimd_f32* transform2,
psimd_f32* transform3) {
const psimd_f32 const_half = psimd_splat_f32(0.5);
const psimd_f32 half_g0_plus_g2 = const_half * (g0 + g2);
*transform0 = g0;
*transform1 = half_g0_plus_g2 + const_half * g1;
*transform2 = half_g0_plus_g2 - const_half * g1;
*transform3 = g2;
}
static inline void winograd_f2k3_output_transform(
const psimd_f32 m0,
const psimd_f32 m1,
const psimd_f32 m2,
const psimd_f32 m3,
psimd_f32* output0,
psimd_f32* output1) {
*output0 = m0 + m1 + m2;
*output1 = m1 - m2 - m3;
}
void runDepthwise3x3Conv(
const DepthwiseArgs& args,
const float* input,
const float* kernel,
const float* bias,
float* output) {
const psimd_f32 vbias = {0, *bias, 0, 0};
const psimd_f32 g0 = psimd_load_f32(kernel);
const psimd_f32 g1 = psimd_load_f32(kernel + 3);
const psimd_f32 g5678 = psimd_load_f32(kernel + 5);
#ifdef __clang__
const psimd_f32 g2 = __builtin_shufflevector(g5678, g5678, 1, 2, 3, -1);
#else
const psimd_f32 g2 =
__builtin_shuffle(g5678, g5678, (psimd_s32){1, 2, 3, -1});
#endif
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
psimd_f32 w[4];
winograd_f2k3_kernel_transform(g0, g1, g2, &w[0], &w[1], &w[2], &w[3]);
psimd_transpose4x4_f32(w[0], w[1], w[2], w[3], &w[0], &w[1], &w[2], &w[3]);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
psimd_f32 wg[4];
winograd_f2k3_kernel_transform(
w[0], w[1], w[2], &wg[0], &wg[1], &wg[2], &wg[3]);
// Iterate over non-padded output tiles.
for (int oth = 0; oth < (args.out_rows + 1) / 2; ++oth) {
for (int otw = 0; otw < (args.out_cols + 1) / 2; ++otw) {
// load input tile for [oth, otw], i.e. [2 * oth - 1:2 * oth - 1 + 2, 2 *
// otw - 1:2 * otw - 1 + 2]]
int ih = oth * 2 - args.pad_rows;
int iw = otw * 2 - args.pad_cols;
// fast-path, all accesses in-bounds
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
float block[4][4];
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
if (ih + row >= 0 && iw + col >= 0 && ih + row < args.in_rows &&
iw + col < args.in_cols) {
block[row][col] = input[(ih + row) * args.in_cols + iw + col];
} else {
block[row][col] = 0.0;
}
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
psimd_f32 wd[4];
winograd_f2k3_input_transform(
psimd_load_f32(&block[0]),
psimd_load_f32(&block[1]),
psimd_load_f32(&block[2]),
psimd_load_f32(&block[3]),
&wd[0],
&wd[1],
&wd[2],
&wd[3]);
psimd_transpose4x4_f32(
wd[0], wd[1], wd[2], wd[3], &wd[0], &wd[1], &wd[2], &wd[3]);
winograd_f2k3_input_transform(
wd[0], wd[1], wd[2], wd[3], &wd[0], &wd[1], &wd[2], &wd[3]);
for (int row = 0; row < 4; ++row) {
wd[row] = wg[row] * wd[row];
}
wd[1] += vbias;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
psimd_f32 s[4] = {{0}};
winograd_f2k3_output_transform(wd[0], wd[1], wd[2], wd[3], &s[0], &s[1]);
psimd_transpose4x4_f32(
s[0], s[1], s[2], s[3], &s[0], &s[1], &s[2], &s[3]);
psimd_f32 t0, t1;
winograd_f2k3_output_transform(s[0], s[1], s[2], s[3], &t0, &t1);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
float oblock[2][4];
psimd_store_f32(&oblock[0], t0);
psimd_store_f32(&oblock[1], t1);
for (int row = 0; row < 2; ++row) {
for (int col = 0; col < 2; ++col) {
if (2 * oth + row >= 0 && 2 * otw + col >= 0 &&
2 * oth + row < args.out_rows && 2 * otw + col < args.out_cols) {
output[(2 * oth + row) * args.out_cols + 2 * otw + col] =
oblock[row][col];
}
}
}
}
}
}
#endif
class Depthwise3x3ConvOp final : public ConvPoolOpBase<CPUContext> {
public:
USE_CONV_POOL_BASE_FUNCTIONS(CPUContext);
Depthwise3x3ConvOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<CPUContext>(operator_def, ws) {
OPERATOR_NEEDS_FEATURE(
this->order_ == StorageOrder::NCHW,
"Depthwise3x3ConvOp only supports NCHW order");
OPERATOR_NEEDS_FEATURE(this->group_ > 1);
OPERATOR_NEEDS_FEATURE(this->kernel_w() == 3);
OPERATOR_NEEDS_FEATURE(this->kernel_h() == 3);
OPERATOR_NEEDS_FEATURE(this->stride_h() == 1);
OPERATOR_NEEDS_FEATURE(this->stride_w() == 1);
}
bool RunOnDeviceWithOrderNCHW() override {
const Tensor& X = Input(0);
auto& filter = Input(1);
const int N = X.dim32(0), C = X.dim32(1);
CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim());
const int M = filter.dim32(0);
CAFFE_ENFORCE_EQ(M, X.dim32(1));
CAFFE_ENFORCE_EQ(C, X.dim32(1));
CAFFE_ENFORCE_EQ(C, this->group_);
CAFFE_ENFORCE_EQ(M, this->group_);
auto sizes = ConvPoolOpBase<CPUContext>::GetOutputSize(X, filter.dim32(0));
Tensor* Y = Output(0, sizes, at::dtype<float>());
DepthwiseArgs args;
args.batch = X.dim32(0);
args.in_rows = X.dim32(2);
args.in_cols = X.dim32(3);
args.stride = this->stride_w();
args.pad_rows = this->pad_t();
args.pad_cols = this->pad_l();
args.out_rows = Y->dim32(2);
args.out_cols = Y->dim32(3);
const auto G = this->group_;
const auto IS = X.dim32(2) * X.dim32(3);
const auto OS = Y->dim32(2) * Y->dim32(3);
if (InputSize() != 3 && bias_.size() != M) {
// no bias.
bias_.Resize(M);
math::Set<float, CPUContext>(
M, 0.0, bias_.mutable_data<float>(), &context_);
}
const auto* bias =
InputSize() == 3 ? Input(2).data<float>() : bias_.data<float>();
auto f = [&](int n, int g) {
runDepthwise3x3Conv(
args,
X.data<float>() + g * IS + n * G * IS,
filter.data<float>() + g * 3 * 3,
bias + g,
Y->mutable_data<float>() + g * OS + n * G * OS);
};
Timer t;
#ifdef C10_MOBILE
ws_->GetThreadPool()->run(
[&](int, int n_g) {
const int g = n_g / N;
const int n = n_g % N;
f(n, g);
},
N * G);
#else
for (auto n = 0; n < N; ++n) {
for (auto g = 0; g < G; ++g) {
f(n, g);
}
}
#endif
if (FLAGS_caffe2_profile_depthwise) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
char buffer[1024];
const double gmacs = double(
Y->dim32(2) * Y->dim32(3) * Y->dim32(1) *
kernel_w() * kernel_h()) /
1.0E9;
const double gflops = 2 * gmacs / t.Seconds();
auto ret = snprintf(
buffer,
sizeof(buffer),
"H: %3zu, W: %3zu, iC: %3zu, oC: %3zu, K: %1zu, S: %1zu, P: %1zu, GMACs: "
"%4.2f, totalT: %6.3f, inputT: %6.3f, "
"kernelT: %6.3f, blockT: %6.3f, outputT: %6.3f, GFLOPS: %6.3f",
size_t(X.dim(2)),
size_t(X.dim(3)),
size_t(X.dim(1)),
size_t(Y->dim(1)),
size_t(kernel_w()),
size_t(stride_w()),
size_t(pad_t()),
gmacs,
t.Seconds() * 1E3,
0 * 1E3,
0 * 1E3,
0 * 1E3,
0 * 1E3,
gflops);
CAFFE_ENFORCE(ret > 0);
LOG(INFO) << buffer;
}
return true;
}
private:
Tensor bias_{CPU};
};
REGISTER_CPU_OPERATOR_WITH_ENGINE(Conv, DEPTHWISE_3x3, Depthwise3x3ConvOp);
} // namespace
} // namespace caffe2
|