1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
#include <iostream>
#include "caffe2/core/common.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/conv_op_shared.h"
#include "caffe2/operators/conv_pool_op_base.h"
#include "caffe2/utils/math.h"
#include "nnpack.h"
C10_DEFINE_bool(caffe2_profile_nnpack, false, "");
namespace caffe2 {
void initNNPACK() {
static std::once_flag once;
std::call_once(once, []() {
enum nnp_status nnpack_status = nnp_initialize();
CAFFE_ENFORCE(
nnpack_status == nnp_status_success, "NNPack is not supported here!");
});
}
////////////////////////////////////////////////////////////////////////////////
// Definitions
////////////////////////////////////////////////////////////////////////////////
class NNPACKConvOp final : public ConvPoolOpBase<CPUContext> {
public:
NNPACKConvOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<CPUContext>(operator_def, ws),
algorithm_(getConvolutionAlgorithm()),
activation_(getActivationType()),
transformStrategy_(getConvolutionTransformStrategy()),
ws_(ws) {
OPERATOR_NEEDS_FEATURE(
this->order_ == StorageOrder::NCHW,
"NNPack only supports NCHW order. Please consider add \
TransposeOp with axes=[0, 3, 1, 2] before NNPack Conv.");
OPERATOR_NEEDS_FEATURE(
pad_t() < kernel_h(), "NNPACK only supports pad < kernel size");
OPERATOR_NEEDS_FEATURE(
pad_b() < kernel_h(), "NNPACK only supports pad < kernel size");
OPERATOR_NEEDS_FEATURE(
pad_l() < kernel_w(), "NNPACK only supports pad < kernel size");
OPERATOR_NEEDS_FEATURE(
pad_r() < kernel_w(), "NNPACK only supports pad < kernel size");
createSharedBuffer<CPUContext>(ws);
}
bool RunOnDeviceWithOrderNCHW() override;
private:
nnp_convolution_algorithm getConvolutionAlgorithm() const;
nnp_convolution_transform_strategy getConvolutionTransformStrategy() const;
nnp_activation getActivationType() const;
const nnp_convolution_algorithm algorithm_;
const nnp_activation activation_;
// Modified after precomputing the kernels. State transitions are:
// - precompute -> (first call to Run()) -> reuse (on successful precompute)
// -> compute (on failing precompute)
// - compute
nnp_convolution_transform_strategy transformStrategy_;
Workspace* ws_;
// Per-group transformed filters
std::vector<TensorCPU*> transformedFilters_;
// Zero-filled bias for convolutions without bias
// This may be needed because NNPACK interface always expects conv with bias
std::vector<float> dummyBias_;
};
////////////////////////////////////////////////////////////////////////////////
// Implementations
////////////////////////////////////////////////////////////////////////////////
nnp_convolution_algorithm NNPACKConvOp::getConvolutionAlgorithm() const {
if (!OperatorBase::HasSingleArgumentOfType<std::string>("algo")) {
// No preference is stated. Heuristics for the best mobile device
// algorithm are different than NNPACK's version, as Winograd
// tends to be a lot faster. Use Winograd if the convolution
// is 3x3d1s1.
if (kernel_h() == 3 && kernel_w() == 3 && dilation_h() == 1 &&
dilation_w() == 1 && stride_h() == 1 && stride_w() == 1) {
// use Winograd
return nnp_convolution_algorithm_wt8x8;
}
return nnp_convolution_algorithm_auto;
}
// Otherwise, there is a preference.
auto algo = OperatorBase::GetSingleArgument<std::string>("algo", "AUTO");
if (algo == "AUTO") {
return nnp_convolution_algorithm_auto;
}
if (algo == "WINOGRAD") {
return nnp_convolution_algorithm_wt8x8;
}
if (algo == "WINOGRAD_FP16") {
return nnp_convolution_algorithm_wt8x8_fp16;
}
if (algo == "FT16") {
return nnp_convolution_algorithm_ft16x16;
}
if (algo == "FT8") {
return nnp_convolution_algorithm_ft8x8;
}
if (algo == "IMPLICIT_GEMM") {
return nnp_convolution_algorithm_implicit_gemm;
}
if (algo == "DIRECT") {
return nnp_convolution_algorithm_direct;
}
return nnp_convolution_algorithm_auto;
}
nnp_convolution_transform_strategy
NNPACKConvOp::getConvolutionTransformStrategy() const {
auto kts = OperatorBase::GetSingleArgument<std::string>(
"convolution_transform_strategy", "COMPUTE");
if (kts == "PRECOMPUTE") {
return nnp_convolution_transform_strategy_precompute;
}
// Default to computing each time.
return nnp_convolution_transform_strategy_compute;
}
nnp_activation NNPACKConvOp::getActivationType() const {
auto activation =
OperatorBase::GetSingleArgument<std::string>("activation", "identity");
if (activation == "identity") {
return nnp_activation_identity;
} else if (activation == "Relu") {
return nnp_activation_relu;
} else {
CAFFE_THROW("unsupported activation type \"", activation, "\"");
}
}
bool NNPACKConvOp::RunOnDeviceWithOrderNCHW() {
/* Global variable with a unique ID of the pre-transformed kernel blob */
volatile static uint32_t precomputed_transform_id = 0;
auto& X = Input(0);
auto& filter = Input(1);
auto* Y = Output(0);
CAFFE_ENFORCE(X.ndim() == 4, "Input dim should be 4");
const int C = X.dim32(1), H = X.dim32(2), W = X.dim32(3);
CAFFE_ENFORCE(filter.ndim() == 4, "");
const int M = filter.dim32(0);
CAFFE_ENFORCE(C % this->group_ == 0, "");
CAFFE_ENFORCE(M % this->group_ == 0, "");
CAFFE_ENFORCE(filter.dim32(1) == C / this->group_, "");
CAFFE_ENFORCE(filter.dim32(2) == kernel_h(), "");
CAFFE_ENFORCE(filter.dim32(3) == kernel_w(), "");
ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
const int oH = Y->dim32(2), oW = Y->dim32(3);
// NOLINTNEXTLINE(modernize-use-nullptr)
const float* biasData = NULL;
if (InputSize() == 3) {
/* Convolution with bias */
auto& bias = Input(2);
CAFFE_ENFORCE(bias.ndim() == 1, "");
CAFFE_ENFORCE(bias.dim32(0) == M, "");
biasData = bias.template data<float>();
} else {
/* NNPACK interface requires bias. Use a dummy zero-filled vector. */
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (dummyBias_.size() != M) {
dummyBias_.resize(M);
}
biasData = dummyBias_.data();
}
const nnp_size input_size = {
.width = static_cast<size_t>(X.dim32(3)),
.height = static_cast<size_t>(X.dim32(2))};
// filter is MCHW
const nnp_size kernel_size = {
.width = static_cast<size_t>(filter.dim32(3)),
.height = static_cast<size_t>(filter.dim32(2))};
// pad is tblr
const nnp_padding padding = {
.top = static_cast<size_t>(pad_t()),
.right = static_cast<size_t>(pad_r()),
.bottom = static_cast<size_t>(pad_b()),
.left = static_cast<size_t>(pad_l())};
const nnp_size output_subsample = {
.width = static_cast<size_t>(stride_w()),
.height = static_cast<size_t>(stride_h())};
initNNPACK();
#if !defined(USE_INTERNAL_PTHREADPOOL_IMPL)
pthreadpool_t pool = nullptr;
#else
pthreadpool_t pool = reinterpret_cast<pthreadpool_t>(ws_->GetThreadPool());
#endif
runWithSharedBuffer<CPUContext>(ws_, [&](Tensor* buffer) {
if (transformStrategy_ == nnp_convolution_transform_strategy_precompute) {
transformedFilters_.resize(group_);
size_t transformedFilterSize = 0;
nnp_status status = nnp_convolution_inference(
algorithm_,
nnp_convolution_transform_strategy_precompute,
C / group_,
M / group_,
input_size,
padding,
kernel_size,
output_subsample,
nullptr /* input */,
nullptr /* filters */,
nullptr /* bias */,
nullptr /* output */,
nullptr /* workspace buffer = transformed filter */,
&transformedFilterSize,
nnp_activation_identity,
nullptr /* activation parameter */,
pool,
nullptr /* profile */);
if (status == nnp_status_success) {
/* For these convolution parameters filter transforms can be
* pre-computed */
/* Division with rounding up, in case size is not multiple of
* sizeof(float) */
const size_t transformedFilterElements =
(transformedFilterSize + sizeof(float) - 1) / sizeof(float);
for (auto g = 0; g < group_; g++) {
transformedFilters_[g] = BlobGetMutableTensor(
ws_->CreateBlob(
"__transformed_kernel_" +
to_string(
__sync_fetch_and_add(&precomputed_transform_id, 1))),
CPU);
transformedFilters_[g]->Resize(transformedFilterElements);
status = nnp_convolution_inference(
algorithm_,
nnp_convolution_transform_strategy_precompute,
C / group_,
M / group_,
input_size,
padding,
kernel_size,
output_subsample,
nullptr /* input */,
filter.template data<float>() + filter.size() / group_ * g,
nullptr /* bias */,
nullptr /* output */,
static_cast<void*>(
transformedFilters_[g]->template mutable_data<float>()),
&transformedFilterSize,
nnp_activation_identity,
nullptr /* activation parameter */,
pool,
nullptr /* profile */);
CAFFE_ENFORCE(
nnp_status_success == status,
"NNPACK convolution filter pre-transformation return error");
}
/*
* Now, we've precomputed all our filter transformations.
* Switch to reuse strategy to avoid doing transformation again on next
* iteration.
*/
if (transformStrategy_ ==
nnp_convolution_transform_strategy_precompute) {
CAFFE_ENFORCE_EQ(transformedFilters_.size(), group_);
transformStrategy_ = nnp_convolution_transform_strategy_reuse;
}
} else {
LOG(WARNING)
<< "Failed to query workspace size to precompute kernels, falling back to re-compute strategy";
transformStrategy_ = nnp_convolution_transform_strategy_compute;
}
// Enforce when we leave this block that we have transitioned out of the
// precompute state.
CAFFE_ENFORCE(
transformStrategy_ != nnp_convolution_transform_strategy_precompute);
}
CAFFE_ENFORCE(
transformStrategy_ == nnp_convolution_transform_strategy_reuse ||
transformStrategy_ == nnp_convolution_transform_strategy_compute);
const auto N = X.dim32(0);
for (auto n = 0; n < N; ++n) {
for (auto g = 0; g < group_; ++g) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
nnp_profile profile;
size_t workspaceSize = buffer->nbytes();
if (workspaceSize == 0) {
/* Allocate some memory to ensure buffer pointer is not NULL. This
* simplifies further logic. */
buffer->Resize(1);
workspaceSize = buffer->nbytes();
}
nnp_status status = nnp_convolution_inference(
algorithm_,
transformStrategy_,
C / group_,
M / group_,
input_size,
padding,
kernel_size,
output_subsample,
X.template data<float>() + n * C * H * W + g * H * W * (C / group_),
transformStrategy_ == nnp_convolution_transform_strategy_reuse
? transformedFilters_[g]->template data<float>()
: filter.template data<float>() + filter.size() / group_ * g,
biasData + M / group_ * g,
Y->template mutable_data<float>() + n * oH * oW * M +
g * oH * oW * (M / group_),
static_cast<void*>(buffer->template mutable_data<float>()),
&workspaceSize,
activation_,
nullptr /* activation parameter */,
pool,
FLAGS_caffe2_profile_nnpack ? &profile : nullptr);
if (status == nnp_status_insufficient_buffer) {
/* Query required workspace size, increase buffer, and try again */
status = nnp_convolution_inference(
algorithm_,
transformStrategy_,
C / group_,
M / group_,
input_size,
padding,
kernel_size,
output_subsample,
nullptr /* input */,
nullptr,
nullptr /* bias */,
nullptr /* output */,
nullptr /* workspace buffer */,
&workspaceSize,
activation_,
nullptr /* activation parameter */,
pool,
nullptr /* profile */);
if (status == nnp_status_success) {
/* Division with rounding up, in case size is not multiple of
* sizeof(float) */
const size_t workspace_elements =
(workspaceSize + sizeof(float) - 1) / sizeof(float);
buffer->Resize(workspace_elements);
/* Try convolution_inference again. If this time it fails, it is
* fatal. */
status = nnp_convolution_inference(
algorithm_,
transformStrategy_,
C / group_,
M / group_,
input_size,
padding,
kernel_size,
output_subsample,
X.template data<float>() + n * C * H * W +
g * H * W * (C / group_),
transformStrategy_ == nnp_convolution_transform_strategy_reuse
? transformedFilters_[g]->template data<float>()
: filter.template data<float>() +
filter.size() / group_ * g,
biasData + M / group_ * g,
Y->template mutable_data<float>() + n * oH * oW * M +
g * oH * oW * (M / group_),
static_cast<void*>(buffer->template mutable_data<float>()),
&workspaceSize,
activation_,
nullptr /* activation parameter */,
pool,
FLAGS_caffe2_profile_nnpack ? &profile : nullptr);
}
}
VLOG(1) << "NNPACK buffer size: " << buffer->nbytes();
CAFFE_ENFORCE(
nnp_status_success == status,
"NNPACK convolution computation returned error");
if (FLAGS_caffe2_profile_nnpack) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-magic-numbers,modernize-avoid-c-arrays)
char buffer[1024];
const double gmacs =
double(
// NOLINTNEXTLINE(bugprone-integer-division)
Y->dim32(2) * Y->dim32(3) * Y->dim32(1) * X.dim32(1) *
kernel_size.width * kernel_size.height / group_ / group_) /
1.0E9;
// NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
const double gflops = 2 * gmacs / profile.total;
auto ret = snprintf(
buffer,
sizeof(buffer),
"H: %3zu, W: %3zu, iC: %3zu, oC: %3zu, K: %1zu, S: %1zu, P: %1zu, GMACs: "
"%4.2f, totalT: %6.3f, inputT: %6.3f, "
"kernelT: %6.3f, blockT: %6.3f, outputT: %6.3f, GFLOPS: %6.3f",
size_t(X.dim(2)),
size_t(X.dim(3)),
size_t(X.dim(1)),
size_t(Y->dim(1)),
size_t(kernel_size.width),
size_t(output_subsample.width),
size_t(padding.top),
gmacs,
profile.total * 1E3,
profile.input_transform * 1E3,
profile.kernel_transform * 1E3,
profile.block_multiplication * 1E3,
profile.output_transform * 1E3,
gflops);
CAFFE_ENFORCE(ret > 0);
std::cout << buffer << std::endl;
}
}
}
});
return true;
}
REGISTER_CPU_OPERATOR_WITH_ENGINE(Conv, NNPACK, NNPACKConvOp);
} // namespace caffe2
|