1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
#ifndef CAFFE2_UTILS_MATH_H_
#define CAFFE2_UTILS_MATH_H_
// This is a simple translation from the old Caffe math interfaces. We aim to
// still keep it simple, so all platforms would be able to support it fairly
// easily.
// We include the cblas header here so that we can obtain the macros from cblas.
extern "C" {
#include "caffe2/utils/cblas.h"
}
#ifdef CAFFE2_USE_ACCELERATE
#include <Accelerate/Accelerate.h>
#endif // CAFFE2_USE_ACCELERATE
#include "caffe2/core/common.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math/broadcast.h"
#include "caffe2/utils/math/elementwise.h"
#include "caffe2/utils/math/reduce.h"
#include "caffe2/utils/math/transpose.h"
#include "caffe2/utils/math/utils.h"
namespace caffe2 {
// TODO: Change dims related arguments to int64_t?
class Tensor;
// An empty class as a placeholder for a math function that has no specific
// engine specified.
class TORCH_API DefaultEngine {};
namespace math {
#define C10_DECLARE_COMPARE_OP(Comp) \
template <typename T, class Context, bool kBroadcast1st = false> \
void Rowwise##Comp( \
const int rows, \
const int cols, \
const T* A, \
const T* B, \
bool* C, \
Context* context); \
\
template <typename T, class Context, bool kBroadcast1st = false> \
void Colwise##Comp( \
const int rows, \
const int cols, \
const T* A, \
const T* B, \
bool* C, \
Context* context); \
\
template <typename T, class Context> \
void Comp( \
const int A_ndim, \
const int* A_dims, \
const int B_ndim, \
const int* B_dims, \
const T* A, \
const T* B, \
bool* C, \
Context* context);
C10_DECLARE_COMPARE_OP(EQ)
C10_DECLARE_COMPARE_OP(NE)
C10_DECLARE_COMPARE_OP(LT)
C10_DECLARE_COMPARE_OP(LE)
C10_DECLARE_COMPARE_OP(GT)
C10_DECLARE_COMPARE_OP(GE)
#undef C10_DECLARE_COMPARE_OP
#define C10_DECLARE_BINARY_OP(Func) \
template <typename T, class Context, bool kBroadcast1st = false> \
void Rowwise##Func( \
const int rows, \
const int cols, \
const T* A, \
const T* B, \
T* C, \
Context* context); \
\
template <typename T, class Context, bool kBroadcast1st = false> \
void Colwise##Func( \
const int rows, \
const int cols, \
const T* A, \
const T* B, \
T* C, \
Context* context); \
\
template <typename T, class Context> \
void Func( \
const int A_ndim, \
const int* A_dims, \
const int B_ndim, \
const int* B_dims, \
const T* A, \
const T* B, \
T* C, \
Context* context);
C10_DECLARE_BINARY_OP(Add)
C10_DECLARE_BINARY_OP(Sub)
C10_DECLARE_BINARY_OP(Mul)
C10_DECLARE_BINARY_OP(Div)
C10_DECLARE_BINARY_OP(And)
C10_DECLARE_BINARY_OP(Or)
C10_DECLARE_BINARY_OP(Xor)
C10_DECLARE_BINARY_OP(BitwiseAnd)
C10_DECLARE_BINARY_OP(BitwiseOr)
C10_DECLARE_BINARY_OP(BitwiseXor)
#undef C10_DECLARE_BINARY_OP
// Broadcasts X with X_dims to Y with Y_dims.
template <typename T, class Context>
TORCH_API void Broadcast(
const int X_ndim,
const int* X_dims,
const int Y_ndim,
const int* Y_dims,
const T alpha,
const T* X,
T* Y,
Context* context,
bool allow_broadcast_fastpath=false);
// Computes inv_std from variance.
template <typename T, class Context>
TORCH_API void InvStd(
const int N,
const T epsilon,
const T* var,
T* inv_std,
Context* context);
// Adds batch sub-tensors elementwise to output. Stripe is the stripe length
// and N is the number of elements to add (size of Y).
template <typename T, class Context>
TORCH_API void AddStripedBatch(
const int N,
const T* first,
T* y,
const int stripe,
const int batch,
Context* context);
// Compute the row-wise max of a N*D matrix X, and write it to a N
// dimensional vector y.
template <typename T, class Context>
TORCH_API void
RowwiseMax(const int N, const int D, const T* x, T* y, Context* context);
// Compute the column-wise max of a N*D matrix X, and write it to a D
// dimensional vector y.
template <typename T, class Context>
TORCH_API void
ColwiseMax(const int N, const int D, const T* x, T* y, Context* context);
// Elemwise maximum of vector x and scalar alpha. y[i] = max(x[i], alpha)
template <typename T, class Context>
TORCH_API void
Maximum(const int N, const float alpha, const T* x, T* y, Context* context);
// Decaf gemm provides a simpler interface to the gemm functions, with the
// limitation that the data has to be contiguous in memory.
template <typename T, class Context, class Engine = DefaultEngine>
TORCH_API void Gemm(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int M,
const int N,
const int K,
const float alpha,
const T* A,
const T* B,
const float beta,
T* C,
Context* context,
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
// We also provide a gemm that has explicit lda, ldb and ldc specified.
// In most cases you probably want to use the function above, though.
template <typename T, class Context, class Engine = DefaultEngine>
TORCH_API void GemmEx(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int M,
const int N,
const int K,
const T alpha,
const T* A,
const int lda,
const T* B,
const int ldb,
const T beta,
T* C,
const int ldc,
Context* context);
// GemmBatched provides a simple abstraction into library routines
template <typename T, class Context, class Engine = DefaultEngine>
TORCH_API void GemmBatched(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const T** A,
const T** B,
const float beta,
T** C,
Context* context,
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
template <typename T, class Context, class Engine = DefaultEngine>
TORCH_API void GemmStridedBatched(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const T* A,
const int A_stride,
const T* B,
const int B_stride,
const float beta,
T* C,
const int C_stride,
Context* context,
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
// Gemv always takes in a M*N matrix A, and depending on whether we set TransA
// to Trans, the output is:
// CblasNoTrans: x is an N dim vector and y is an M dim vector.
// CblasTrans: x is an M dim vector and y is an N dim vector.
template <typename T, class Context, class Engine = DefaultEngine>
TORCH_API void Gemv(
const CBLAS_TRANSPOSE trans_A,
const int M,
const int N,
const float alpha,
const T* A,
const T* x,
const float beta,
T* y,
Context* context,
TensorProto::DataType math_type = TensorProto_DataType_FLOAT);
template <typename T, class Context>
TORCH_API void
RandUniform(const size_t n, const T a, const T b, T* r, Context* context);
// Generate n values that sum up to a fixed sum
// and subject to a restriction a <= x <= b for each x generated
template <typename T, class Context>
TORCH_API void RandFixedSum(
const size_t n,
const T a,
const T b,
const T sum,
T* r,
Context* context);
template <typename T, class Context>
TORCH_API void RandUniformUnique(
const size_t n,
const T a,
const T b,
T* r,
const size_t m,
const T* avoid,
Context* context);
// Generate n values from synthetic data distribution,
// define by unique accesses and stack distances
template <typename T, class Context>
TORCH_API void
RandSyntheticData(const size_t n, const T a, const T b, T* r, Context* context);
template <typename T, class Context>
TORCH_API void
RandGaussian(const size_t n, const T mean, const T std, T* r, Context* context);
// Dot matrix of vector a and b, and writes the result to a single value y.
template <typename T, class Context>
TORCH_API void
Dot(const int N, const T* a, const T* b, T* y, Context* context);
// Sum of vector x, and writes the result to a single value y.
template <typename T, class Context>
TORCH_API void Sum(
const int N,
const T* x,
T* y,
Context* context,
Tensor* scratch_ptr = nullptr);
// Sum of squares of vector x, and writes the result to a single value y.
template <typename T, class Context>
TORCH_API void SumSqr(
const int N,
const T* x,
T* y,
Context* context,
Tensor* scratch_ptr = nullptr);
// Select does index selection of the rows a N*D matrix x, and gives the N
// dimensional vector y that contains the selected data.
template <typename T, class Context>
TORCH_API void Select(
const int N,
const int D,
const T* x,
const int* idx,
T* y,
Context* context);
// groups must be 1 for GPU
// For NHWC order with groups > 1, the result will be layout in
// NHW G RS C/G order to make data within the same group to be contiguous.
// For NCHW order, groups doesn't make any difference because we're doing Im2Col
// for each N and C is the slowest moving dimension among CHW.
template <typename T, class Context, StorageOrder kOrder>
TORCH_API void Im2Col(
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const T* img_data,
T* col_data,
Context* context,
const int groups = 1);
// groups must be 1 for GPU
template <typename T, class Context, StorageOrder kOrder>
TORCH_API void Im2ColNd(
const int N,
const int img_size,
const int col_size,
const int* img_shape,
const int* col_shape,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const T* img_data,
T* col_data,
Context* context,
const int groups = 1);
// groups must be 1 for GPU
// For NHWC order with groups > 1, the result will be layout in
// NHW G RS C/G order to make data within the same group to be contiguous.
// For NCHW order, groups doesn't make any difference because we're doing Im2Col
// for each N and C is the slowest moving dimension among CHW.
template <typename T, class Context, StorageOrder kOrder>
TORCH_API void Col2Im(
const int channels,
const int height,
const int width,
const int patch_h,
const int patch_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const T* col_data,
T* img_data,
Context* context,
const int groups = 1);
// groups must be 1 for GPU
// For NHWC order with groups > 1, the result will be layout in
// NHW G RS C/G order to make data within the same group to be contiguous.
// For NCHW order, groups doesn't make any difference because we're doing Im2Col
// for each N and C is the slowest moving dimension among CHW.
template <typename T, class Context, StorageOrder kOrder>
TORCH_API void Col2ImNd(
const int N,
const int img_size,
const int col_size,
const int* img_shape,
const int* col_shape,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const T* col_data,
T* img_data,
Context* context,
const int groups = 1);
// Applies a per-channel bias value to each channel of the input
// image. image_size is H * W
template <typename T, class Context>
TORCH_API void BiasCHW(
const T* bias,
const T* bias_multiplier,
const int bias_channels,
const int image_size,
T* image,
Context* context);
template <class Context>
TORCH_API void CopyMatrix(
const size_t item_size,
const int M,
const int N,
const void* A,
const int lda,
void* B,
const int ldb,
Context* context,
TypeMeta::Copy copy = nullptr);
template <typename T, class Context>
TORCH_API void CopyMatrix(
const int M,
const int N,
const T* A,
const int lda,
T* B,
const int ldb,
Context* context);
template <typename T, class Context>
TORCH_API void CopyMatrix(
const int M,
const int N,
const T* A,
const int A_outer_stride,
const int A_inner_stride,
T* B,
const int B_outer_stride,
const int B_inner_stride,
Context* context);
template <typename T, class Context>
TORCH_API void CopyVector(const int N, const T* A, T* B, Context* context);
} // namespace math
} // namespace caffe2
#include "caffe2/utils/math-detail.h"
#endif // CAFFE2_UTILS_MATH_H_
|