File: reduce.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (114 lines) | stat: -rw-r--r-- 2,672 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#ifndef CAFFE2_UTILS_MATH_REDUCE_H_
#define CAFFE2_UTILS_MATH_REDUCE_H_

#include "caffe2/core/common.h"
#include "caffe2/core/types.h"

namespace caffe2 {

class Tensor;

namespace math {

template <typename T, class Context>
TORCH_API void
ReduceMin(const int N, const T* X, T* y, Tensor* scratch_ptr, Context* context);

template <typename T, class Context>
TORCH_API void
ReduceMax(const int N, const T* X, T* y, Tensor* scratch_ptr, Context* context);

// In all of the reduce functions, X_dims and Y_dims should have ndim elements.
// Each dimension of Y_dims must match the corresponding dimension of X_dims or
// must be equal to 1. The dimensions equal to 1 indicate the dimensions of X to
// be reduced.

// Y = alpha * ReduceMin(X)
template <typename T, class Context>
TORCH_API void ReduceMin(
    const int ndim,
    const int* X_dims,
    const int* Y_dims,
    const T alpha,
    const T* X,
    T* Y,
    Context* context,
    bool allow_broadcast_fastpath=false);

// Y = alpha * ReduceMax(X)
template <typename T, class Context>
TORCH_API void ReduceMax(
    const int ndim,
    const int* X_dims,
    const int* Y_dims,
    const T alpha,
    const T* X,
    T* Y,
    Context* context,
    bool allow_broadcast_fastpath=false);

// Y = alpha * ReduceSum(X)
template <typename T, class Context>
TORCH_API void ReduceSum(
    const int ndim,
    const int* X_dims,
    const int* Y_dims,
    const T alpha,
    const T* X,
    T* Y,
    Context* context,
    bool allow_broadcast_fastpath=false);

// Y = alpha * ReduceMean(X)
template <typename T, class Context>
TORCH_API void ReduceMean(
    const int ndim,
    const int* X_dims,
    const int* Y_dims,
    const T alpha,
    const T* X,
    T* Y,
    Context* context,
    bool allow_broadcast_fastpath=false);

// Y = alpha * ReduceL1(X)
template <typename T, class Context>
TORCH_API void ReduceL1(
    const int ndim,
    const int* X_dims,
    const int* Y_dims,
    const T alpha,
    const T* X,
    T* Y,
    Context* context,
    bool allow_broadcast_fastpath=false);

// Y = alpha * ReduceL2(X)
template <typename T, class Context>
TORCH_API void ReduceL2(
    const int ndim,
    const int* X_dims,
    const int* Y_dims,
    const T alpha,
    const T* X,
    T* Y,
    Context* context,
    bool allow_broadcast_fastpath=false);

// Computes mean and variance over axes.
template <typename T, class Context>
TORCH_API void Moments(
    const int ndims,
    const int* X_dims,
    const int* Y_dims,
    const T* X,
    T* mean,
    T* var,
    Context* context,
    bool allow_broadcast_fastpath=false);

} // namespace math

} // namespace caffe2

#endif // CAFFE2_UTILS_MATH_REDUCE_H_