1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
#include "caffe2/utils/math/transpose.h"
#include <algorithm>
#include <functional>
#include <numeric>
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/math/utils.h"
namespace caffe2 {
namespace math {
namespace {
constexpr int kTileDim = 32;
constexpr int kBlockRows = 8;
// Splits the original matrix into submatrices with size 32 * 32.
// Each block transposes one submatrix by loading it into shared memory.
// Reference https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/
template <typename TIndex, typename TData>
__global__ void BatchTranspose2DCUDAKernel(
const TIndex H,
const TIndex W,
const TIndex dh,
const TIndex dw,
const TData* X,
TData* Y) {
__shared__ TData tile[kTileDim][kTileDim + 1];
const TIndex n = blockIdx.x / (dh * dw);
const TIndex k = blockIdx.x % (dh * dw);
const TIndex r = k / dw;
const TIndex c = k % dw;
const TIndex offset = n * H * W;
int x = c * kTileDim + threadIdx.x;
int y = r * kTileDim + threadIdx.y;
if (x < W) {
for (int i = 0; threadIdx.y + i < kTileDim && y + i < H; i += kBlockRows) {
#if __CUDA_ARCH__ >= 350 || defined(USE_ROCM)
tile[threadIdx.y + i][threadIdx.x] = __ldg(X + offset + (y + i) * W + x);
#else
tile[threadIdx.y + i][threadIdx.x] = X[offset + (y + i) * W + x];
#endif
}
}
__syncthreads();
x = r * kTileDim + threadIdx.x;
y = c * kTileDim + threadIdx.y;
if (x < H) {
for (int i = 0; threadIdx.y + i < kTileDim && y + i < W; i += kBlockRows) {
Y[offset + (y + i) * H + x] = tile[threadIdx.x][threadIdx.y + i];
}
}
}
template <typename TIndex, typename TData>
void BatchTranspose2DCUDAImpl(
const TIndex N,
const TIndex H,
const TIndex W,
const TData* X,
TData* Y,
CUDAContext* context) {
const TIndex dh = DivUp<TIndex>(H, kTileDim);
const TIndex dw = DivUp<TIndex>(W, kTileDim);
BatchTranspose2DCUDAKernel<TIndex, TData>
<<<N * dh * dw, dim3(kTileDim, kBlockRows), 0, context->cuda_stream()>>>(
H, W, dh, dw, X, Y);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
#define DELEGATE_TRANSPOSE_2D_CUDA_IMPL(TIndex, TData, CuBLASFunc) \
template <> \
void BatchTranspose2DCUDAImpl<TIndex, TData>( \
const TIndex N, \
const TIndex H, \
const TIndex W, \
const TData* X, \
TData* Y, \
CUDAContext* context) { \
if (N == 1) { \
const TData kAlpha = TData(1); \
const TData kBeta = TData(0); \
CUBLAS_ENFORCE(cublasSetPointerMode( \
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST)); \
CUBLAS_ENFORCE(CuBLASFunc( \
context->cublas_handle(), \
CUBLAS_OP_T, \
CUBLAS_OP_N, \
H, \
W, \
&kAlpha, \
X, \
W, \
&kBeta, \
Y, \
H, \
Y, \
H)); \
} else { \
const TIndex dh = DivUp<TIndex>(H, kTileDim); \
const TIndex dw = DivUp<TIndex>(W, kTileDim); \
BatchTranspose2DCUDAKernel<TIndex, TData> \
<<<N * dh * dw, \
dim3(kTileDim, kBlockRows), \
0, \
context->cuda_stream()>>>(H, W, dh, dw, X, Y); \
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
} \
}
DELEGATE_TRANSPOSE_2D_CUDA_IMPL(std::int32_t, float, cublasSgeam)
DELEGATE_TRANSPOSE_2D_CUDA_IMPL(std::int64_t, float, cublasSgeam)
DELEGATE_TRANSPOSE_2D_CUDA_IMPL(std::int32_t, double, cublasDgeam)
DELEGATE_TRANSPOSE_2D_CUDA_IMPL(std::int64_t, double, cublasDgeam)
#undef DELEGATE_TRANSPOSE_2D_CUDA_IMPL
template <typename TIndex, typename TData, int D>
__global__ void TransposeCUDAKernel(
const TIndex size,
const SimpleArray<TIndex, D> X_strides,
const SimpleArray<TIndex, D> Y_dims,
const TData* X,
TData* Y) {
const int Y_index = blockIdx.x * CAFFE_CUDA_NUM_THREADS + threadIdx.x;
if (Y_index < size) {
TIndex X_index = 0;
TIndex v = Y_index;
#pragma unroll
for (int i = D - 1; i >= 0; --i) {
X_index += v % Y_dims.data[i] * X_strides.data[i];
v /= Y_dims.data[i];
}
#if __CUDA_ARCH__ >= 350 || defined(USE_ROCM)
Y[Y_index] = __ldg(X + X_index);
#else
Y[Y_index] = X[X_index];
#endif
}
}
template <typename TIndex, typename TData, int D>
void TransposeCUDAImpl(
const TIndex* dims,
const int* axes,
const TData* X,
TData* Y,
CUDAContext* context) {
SimpleArray<TIndex, D> X_strides;
SimpleArray<TIndex, D> Y_dims;
utils::ComputeTransposedStrides<TIndex>(D, dims, axes, X_strides.data);
TIndex size = 1;
for (int i = 0; i < D; ++i) {
Y_dims.data[i] = dims[axes[i]];
size *= dims[i];
}
const TIndex M = DivUp<TIndex>(size, CAFFE_CUDA_NUM_THREADS);
TransposeCUDAKernel<TIndex, TData, D>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(
size, X_strides, Y_dims, X, Y);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(TIndex, TData) \
template <> \
CAFFE2_CUDA_EXPORT void Transpose<TIndex, TData, CUDAContext>( \
const int ndim, \
const TIndex* dims, \
const int* axes, \
const TData* X, \
TData* Y, \
CUDAContext* context) { \
const TIndex size = std::accumulate( \
dims, dims + ndim, TIndex(1), std::multiplies<TIndex>()); \
if (size == 0) { \
return; \
} \
if (utils::IsIdentityPermutation(ndim, axes)) { \
context->template CopySameDevice<TData>(size, X, Y); \
return; \
} \
if (utils::IsBatchTranspose2D(ndim, axes)) { \
const int H = dims[ndim - 2]; \
const int W = dims[ndim - 1]; \
const int N = size / (H * W); \
BatchTranspose2DCUDAImpl<TIndex, TData>(N, H, W, X, Y, context); \
return; \
} \
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_2( \
ndim, TransposeCUDAImpl, TIndex, TData, dims, axes, X, Y, context); \
}
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(std::int32_t, float)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(std::int64_t, float)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(std::int32_t, double)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(std::int64_t, double)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(std::int32_t, std::int32_t)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(std::int64_t, std::int32_t)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(std::int32_t, std::int64_t)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(std::int64_t, std::int64_t)
#undef CAFFE2_SPECIALIZED_CUDA_TRANSPOSE
#define CAFFE2_SPECIALIZED_CUDA_NCHW2NHWC(T) \
template <> \
CAFFE2_CUDA_EXPORT void NCHW2NHWC<T, CUDAContext>( \
const int N, \
const int C, \
const int HxW, \
const T* X, \
T* Y, \
CUDAContext* context) { \
BatchTranspose2DCUDAImpl<int, T>(N, C, HxW, X, Y, context); \
}
CAFFE2_SPECIALIZED_CUDA_NCHW2NHWC(float)
#undef CAFFE2_SPECIALIZED_CUDA_NCHW2NHWC
#define CAFFE2_SPECIALIZED_CUDA_NHWC2NCHW(T) \
template <> \
CAFFE2_CUDA_EXPORT void NHWC2NCHW<T, CUDAContext>( \
const int N, \
const int C, \
const int HxW, \
const T* X, \
T* Y, \
CUDAContext* context) { \
BatchTranspose2DCUDAImpl<int, T>(N, HxW, C, X, Y, context); \
}
CAFFE2_SPECIALIZED_CUDA_NHWC2NCHW(float)
#undef CAFFE2_SPECIALIZED_CUDA_NHWC2NCHW
} // namespace math
} // namespace caffe2
|