File: WorkersPool.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (373 lines) | stat: -rw-r--r-- 11,607 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#pragma once

#include <atomic>
#include <condition_variable>
#include <thread>
#include "c10/util/thread_name.h"
#include <c10/util/irange.h>
#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"

#if defined(_MSC_VER)
#include <intrin.h>
#endif

namespace caffe2 {

// Uses code derived from gemmlowp,
// https://github.com/google/gemmlowp/blob/6c91e1ed0c2eff1182d804310b92911fe9c18019/internal/multi_thread_gemm.h
// Changes:
// - allocation-free execute()
// - Use RAII where possible.
// - Run the first task on the main thread (since that is the largest task).
// - removed custom allocator.
// - Removed some ifdef's
// - cache-line align Worker.
// - use std::atomic instead of volatile and custom barriers.
// - use std::mutex/std::condition_variable instead of raw pthreads.

constexpr size_t kGEMMLOWPCacheLineSize = 64;

template <typename T>
struct AllocAligned {
  // Allocate a T aligned at an `align` byte address
  template <typename... Args>
  static T* alloc(Args&&... args) {
    void* p = nullptr;

#if defined(__ANDROID__)
    p = memalign(kGEMMLOWPCacheLineSize, sizeof(T));
#elif defined(_MSC_VER)
    p = _aligned_malloc(sizeof(T), kGEMMLOWPCacheLineSize);
#else
    posix_memalign((void**)&p, kGEMMLOWPCacheLineSize, sizeof(T));
#endif

    if (p) {
      return new (p) T(std::forward<Args>(args)...);
    }

    return nullptr;
  }

  // Free a T previously allocated via AllocAligned<T>::alloc()
  static void release(T* p) {
    if (p) {
      p->~T();
#if defined(_MSC_VER)
      _aligned_free((void*)p);
#else
      free((void*)p);
#endif
    }
  }
};

// Deleter object for unique_ptr for an aligned object
template <typename T>
struct AlignedDeleter {
  void operator()(T* p) const { AllocAligned<T>::release(p); }
};

// make_unique that guarantees alignment
template <typename T>
struct MakeAligned {
  template <typename... Args>
  static std::unique_ptr<T, AlignedDeleter<T>> make(Args&&... args) {
    return std::unique_ptr<T, AlignedDeleter<T>>(
        AllocAligned<T>::alloc(std::forward<Args>(args)...));
  }
};

const int kMaxBusyWaitNOPs = 32 * 1000 * 1000;

#if defined(_MSC_VER)
#define GEMMLOWP_NOP __nop();
#else
#define GEMMLOWP_NOP "nop\n"
#endif

#define GEMMLOWP_STRING_CONCAT_4(X) X X X X
#define GEMMLOWP_NOP4 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP)
#define GEMMLOWP_NOP16 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP4)
#define GEMMLOWP_NOP64 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP16)

inline int Do256NOPs() {
#if defined(_MSC_VER)
  GEMMLOWP_NOP64;
#else
  asm volatile(GEMMLOWP_NOP64);
#endif
  return 64;
}

#undef GEMMLOWP_STRING_CONCAT_4
#undef GEMMLOWP_NOP256
#undef GEMMLOWP_NOP64
#undef GEMMLOWP_NOP16
#undef GEMMLOWP_NOP4
#undef GEMMLOWP_NOP

// Waits until *var != initial_value.
//
// Returns the new value of *var. The guarantee here is that
// the return value is different from initial_value, and that that
// new value has been taken by *var at some point during the
// execution of this function. There is no guarantee that this is
// still the value of *var when this function returns, since *var is
// not assumed to be guarded by any lock.
//
// First does some busy-waiting for a fixed number of no-op cycles,
// then falls back to passive waiting for the given condvar, guarded
// by the given mutex.
//
// The idea of doing some initial busy-waiting is to help get
// better and more consistent multithreading benefits for small GEMM sizes.
// Busy-waiting help ensuring that if we need to wake up soon after having
// started waiting, then we can wake up quickly (as opposed to, say,
// having to wait to be scheduled again by the OS). On the other hand,
// we must still eventually revert to passive waiting for longer waits
// (e.g. worker threads having finished a GEMM and waiting until the next GEMM)
// so as to avoid permanently spinning.
//
template <typename T>
T WaitForVariableChange(std::atomic<T>* var,
                        T initial_value,
                        std::condition_variable* cond,
                        std::mutex* mutex) {
  // If we are on a platform that supports it, spin for some time.
  {
    int nops = 0;
    // First, trivial case where the variable already changed value.
    T new_value = var->load(std::memory_order_relaxed);
    if (new_value != initial_value) {
      std::atomic_thread_fence(std::memory_order_acquire);
      return new_value;
    }
    // Then try busy-waiting.
    while (nops < kMaxBusyWaitNOPs) {
      nops += Do256NOPs();
      new_value = var->load(std::memory_order_relaxed);
      if (new_value != initial_value) {
        std::atomic_thread_fence(std::memory_order_acquire);
        return new_value;
      }
    }
  }

  // Finally, do real passive waiting.
  {
    std::unique_lock<std::mutex> g(*mutex);
    T new_value = var->load(std::memory_order_relaxed);
    // Handle spurious wakeups.
    cond->wait(g, [&]() {
      new_value = var->load(std::memory_order_relaxed);
      return new_value != initial_value;
    });
    TORCH_DCHECK_NE(static_cast<size_t>(new_value), static_cast<size_t>(initial_value));
    return new_value;
  }
}

// A BlockingCounter lets one thread to wait for N events to occur.
// This is how the master thread waits for all the worker threads
// to have finished working.
class BlockingCounter {
 public:
  // Sets/resets the counter; initial_count is the number of
  // decrementing events that the Wait() call will be waiting for.
  void Reset(std::size_t initial_count) {
    std::lock_guard<std::mutex> g(mutex_);
    TORCH_DCHECK_EQ(count_, 0);
    count_ = initial_count;
  }

  // Decrements the counter; if the counter hits zero, signals
  // the thread that was waiting for that, and returns true.
  // Otherwise (if the decremented count is still nonzero),
  // returns false.
  bool DecrementCount() {
    const auto count_value = count_.fetch_sub(1, std::memory_order_relaxed) - 1;
    TORCH_DCHECK_GE(count_value, 0);
    if (count_value == 0) {
      std::lock_guard<std::mutex> g(mutex_);
      cond_.notify_one();
    }
    bool retval = count_value == 0;
    return retval;
  }

  // Waits for the N other threads (N having been set by Reset())
  // to hit the BlockingCounter.
  void Wait() {
    while (size_t count_value = count_.load(std::memory_order_relaxed)) {
      WaitForVariableChange(&count_, count_value, &cond_, &mutex_);
    }
  }

 private:
  std::condition_variable cond_;
  std::mutex mutex_;
  std::atomic<std::size_t> count_{0};
};

// A workload for a worker.
struct Task {
  Task() {}
  virtual ~Task() {}
  virtual void Run() = 0;
};

// A worker thread.
class alignas(kGEMMLOWPCacheLineSize) Worker {
 public:
  enum class State : uint8_t {
    ThreadStartup, // The initial state before the thread main loop runs.
    Ready, // Is not working, has not yet received new work to do.
    HasWork, // Has work to do.
    ExitAsSoonAsPossible // Should exit at earliest convenience.
  };

  explicit Worker(BlockingCounter* counter_to_decrement_when_ready)
      : task_(nullptr),
        state_(State::ThreadStartup),
        counter_to_decrement_when_ready_(counter_to_decrement_when_ready) {
    thread_ = std::make_unique<std::thread>([this]() { this->ThreadFunc(); });
  }

  ~Worker() {
    ChangeState(State::ExitAsSoonAsPossible);
    thread_->join();
  }

  // Changes State; may be called from either the worker thread
  // or the master thread; however, not all state transitions are legal,
  // which is guarded by assertions.
  void ChangeState(State new_state) {
    std::lock_guard<std::mutex> g(state_mutex_);
    DCHECK(new_state != state_.load(std::memory_order_relaxed));
    switch (state_.load(std::memory_order_relaxed)) {
    case State::ThreadStartup:
      DCHECK(new_state == State::Ready);
      break;
    case State::Ready:
      DCHECK(new_state == State::HasWork || new_state == State::ExitAsSoonAsPossible);
      break;
    case State::HasWork:
      DCHECK(new_state == State::Ready || new_state == State::ExitAsSoonAsPossible);
      break;
    default:
      abort();
    }
    state_.store(new_state, std::memory_order_relaxed);
    state_cond_.notify_one();
    if (new_state == State::Ready) {
      counter_to_decrement_when_ready_->DecrementCount();
    }
  }

  // Thread entry point.
  void ThreadFunc() {
    c10::setThreadName("CaffeWorkersPool");
    ChangeState(State::Ready);

    // Thread main loop
    while (true) {
      // Get a state to act on
      // In the 'Ready' state, we have nothing to do but to wait until
      // we switch to another state.
      State state_to_act_upon =
          WaitForVariableChange(&state_, State::Ready, &state_cond_, &state_mutex_);

      // We now have a state to act on, so act.
      switch (state_to_act_upon) {
      case State::HasWork:
        // Got work to do! So do it, and then revert to 'Ready' state.
        DCHECK(task_.load());
        (*task_).Run();
        task_ = nullptr;
        ChangeState(State::Ready);
        break;
      case State::ExitAsSoonAsPossible:
        return;
      default:
        abort();
      }
    }
  }

  static void* ThreadFunc(void* arg) {
    static_cast<Worker*>(arg)->ThreadFunc();
    return nullptr;
  }

  // Called by the master thread to give this worker work to do.
  // It is only legal to call this if the worker
  void StartWork(Task* task) {
    DCHECK(!task_.load());
    task_ = task;
    DCHECK(state_.load(std::memory_order_acquire) == State::Ready);
    ChangeState(State::HasWork);
  }

 private:
  // The underlying thread.
  std::unique_ptr<std::thread> thread_;

  // The task to be worked on.
  std::atomic<Task*> task_;

  // The condition variable and mutex guarding state changes.
  std::condition_variable state_cond_;
  std::mutex state_mutex_;

  // The state enum tells if we're currently working, waiting for work, etc.
  std::atomic<State> state_;

  // pointer to the master's thread BlockingCounter object, to notify the
  // master thread of when this worker switches to the 'Ready' state.
  BlockingCounter* const counter_to_decrement_when_ready_;
};

class WorkersPool {
 public:
  WorkersPool() {}

  void Execute(const std::vector<std::shared_ptr<Task>>& tasks) {
    CAFFE_ENFORCE_GE(tasks.size(), 1);
    // One of the tasks will be run on the current thread.
    int workers_count = tasks.size() - 1;
    CreateWorkers(workers_count);
    TORCH_DCHECK_LE(workers_count, (int)workers_.size());
    counter_to_decrement_when_ready_.Reset(workers_count);
    for (const auto task : c10::irange(1, tasks.size())) {
      workers_[task - 1]->StartWork(tasks[task].get());
    }
    // Execute the remaining workload immediately on the current thread.
    auto& task = tasks.front();
    task->Run();
    // Wait for the workers submitted above to finish.
    counter_to_decrement_when_ready_.Wait();
  }

 private:
  // Ensures that the pool has at least the given count of workers.
  // If any new worker has to be created, this function waits for it to
  // be ready.
  void CreateWorkers(std::size_t workers_count) {
    if (workers_.size() >= workers_count) {
      return;
    }
    counter_to_decrement_when_ready_.Reset(workers_count - workers_.size());
    while (workers_.size() < workers_count) {
      workers_.push_back(MakeAligned<Worker>::make(&counter_to_decrement_when_ready_));
    }
    counter_to_decrement_when_ready_.Wait();
  }

  C10_DISABLE_COPY_AND_ASSIGN(WorkersPool);
  std::vector<std::unique_ptr<Worker, AlignedDeleter<Worker>>> workers_;
  // The BlockingCounter used to wait for the workers.
  BlockingCounter counter_to_decrement_when_ready_;
};
} // namespace caffe2