File: random_ops_stress_test.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (587 lines) | stat: -rw-r--r-- 26,139 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
// (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary.

#include <stdio.h>
#include <unistd.h>

#include "random_ops_stress_test.cuh"

namespace kineto_stress_test {

// Random number generation constants. They should not be modified, otherwise
// it's likely that most values will converge to 0.
#define LCG_A 8121
#define LCG_C 28411
#define LCG_M 134456
#define RNG_SEED_1 1025
#define RNG_SEED_2 2049

// We pre-create a memory pool of buffers on which we do various operations.
// This is similar to the tensor cache that PyTorch is managing.
tensor_pair* p_memory_pool;

// Size of the memory pool in megabytes
uint32_t sz_memory_pool_KB;

// Number of tensor pairs in the memory pool
uint32_t num_tensor_pairs;

// A kernel that fills a device buffer with random values
__global__ void simple_rng_lcg(float* d_A, int num_elements) {
  int tid = blockDim.x * blockIdx.x + threadIdx.x;
  if (tid < num_elements) {
    uint32_t xn = tid * (tid + 1);
    d_A[tid] = (float)((LCG_A * xn + LCG_C) % LCG_M);
  }
}

// We are using this to reduce the number of code lines

struct lcg_kernel_input {
  float const* __restrict__ d_a;
  float const* __restrict__ d_b;
  float* __restrict__ d_c;
  int len;
  int iters;
};

// C = A + B kernel where A and B are generated using a linear
// congruential generator. If the number of iterations is small
// the kernel is memory bandwidth bound. If iterations count is
// high, the kernel is compute bound.

// The kernel name is so long because we wanted to test if the number
// of characters in the kernel name influences the number of
// records that can be kept in the buffer.

// We use the template call to be able to change the kernel name with
// a simple hardcoded constant number

template<uint32_t offset_seed_a, uint32_t offset_seed_b>
__global__ void iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers(lcg_kernel_input input) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < input.len) {
    uint32_t seed_a = (uint32_t)input.d_a[idx] + offset_seed_a;
    uint32_t seed_b = (uint32_t)input.d_b[idx] + offset_seed_b;
    uint32_t xna = 0;
    uint32_t xnb = 0;

    for (int i = 0; i < input.iters; ++i) {
      xna = (LCG_A * seed_a + LCG_C) % LCG_M;
      xnb = (LCG_A * seed_b + LCG_C) % LCG_M;
      seed_a = xna;
      seed_b = xnb;
    }

    input.d_c[idx] = 0.25 + (float)((xna + xnb) % 1000) / 1000.0;
  }
}

// Use this function to vary the kernel name at runtime
void call_compute_kernel(
  uint32_t thread_blocks,
  uint32_t threads_per_block,
  uint32_t shmem_sz,
  cudaStream_t stream,
  lcg_kernel_input kernel_args,
  uint32_t op_id
);

// Fill the buffers on the host with random values
void simple_lcg_host(float* h_A, int num_elements) {
  for (int i = 0; i < num_elements; ++i) {
    uint32_t xn = i * (i + 1);
    h_A[i] = (float)((LCG_A * xn + LCG_C) % LCG_M);
  }
}

inline void checkCudaStatus(cudaError_t status, int lineNumber = -1) {
  if (status != cudaSuccess) {
    printf(
        "cuda API failed with status %d: %s at line %d\n",
        status,
        cudaGetErrorString(status),
        lineNumber);
    exit(-1);
  }
}

void generate_tensor_cache(tensor_cache_args cache_args) {
  // Estimate the number of tensor pairs
  uint32_t num_pairs_estimated =
      cache_args.sz_cache_KB / (3 * (cache_args.sz_max_tensor_KB -
          cache_args.sz_min_tensor_KB) / 2);

  // Number of actual pairs
  num_tensor_pairs = 0;

  // At firs the pool is empty
  sz_memory_pool_KB = 0;

  // Pre-allocate num_pairs_estimated and if num_tensor_pairs comes lower, well,
  // that's life
  p_memory_pool =
      (tensor_pair*)malloc(num_pairs_estimated * sizeof(tensor_pair));

  // Start creating the pool
  srand(RNG_SEED_1);
  for (int i = 0; i < num_pairs_estimated; ++i) {
    uint32_t num_KB =
        rand() % (cache_args.sz_max_tensor_KB - cache_args.sz_min_tensor_KB) +
            cache_args.sz_min_tensor_KB;
    uint32_t num_elements = num_KB * 1024 / sizeof(float);

    // Allocate device buffers
    p_memory_pool[i].n_elements = num_elements;
    checkCudaStatus(
        cudaMalloc(&p_memory_pool[i].d_A, num_elements * sizeof(float)));
    checkCudaStatus(
        cudaMalloc(&p_memory_pool[i].d_B, num_elements * sizeof(float)));
    checkCudaStatus(
        cudaMalloc(&p_memory_pool[i].d_C, num_elements * sizeof(float)));

    // Initialize device buffers with random values
    uint32_t thread_blocks = num_elements / 256;
    simple_rng_lcg<<<thread_blocks, 256>>>(
        p_memory_pool[i].d_A, p_memory_pool[i].n_elements);
    simple_rng_lcg<<<thread_blocks, 256>>>(
        p_memory_pool[i].d_B, p_memory_pool[i].n_elements);
    simple_rng_lcg<<<thread_blocks, 256>>>(
        p_memory_pool[i].d_C, p_memory_pool[i].n_elements);

    // Throw a dice to see if we will do memcopy device to host for this one
    if (((float)(rand() % 10000) / 10000.0) < cache_args.prob_h2d) {
      p_memory_pool[i].b_copy_h2d = true;
      p_memory_pool[i].h_A = (float*)malloc(num_elements * sizeof(float));
      p_memory_pool[i].h_B = (float*)malloc(num_elements * sizeof(float));

      simple_lcg_host(p_memory_pool[i].h_A, num_elements);
      simple_lcg_host(p_memory_pool[i].h_B, num_elements);
    } else {
      p_memory_pool[i].b_copy_h2d = false;
      p_memory_pool[i].h_A = NULL;
      p_memory_pool[i].h_B = NULL;
    }

    // Simulate output download
    if (((float)(rand() % 10000) / 10000.0) < cache_args.prob_d2h) {
      p_memory_pool[i].b_copy_d2h = true;
    } else {
      p_memory_pool[i].b_copy_d2h = false;
    }

    // Now we have a new tensor pair
    num_tensor_pairs++;
    sz_memory_pool_KB += (3 * num_KB);

    // If we allocated too much, just exit
    if (sz_memory_pool_KB >= cache_args.sz_cache_KB) {
      printf("Allocated %d tensor pairs.\n", num_tensor_pairs);
      break;
    }
  }
}

void re_initialize_buffer_values() {
  for (uint32_t i = 0; i < num_tensor_pairs; ++i) {
    uint32_t num_elements = p_memory_pool[i].n_elements;

    // Initialize device buffers with random values
    uint32_t thread_blocks = num_elements / 256;
    simple_rng_lcg<<<thread_blocks, 256>>>(
        p_memory_pool[i].d_A, p_memory_pool[i].n_elements);
    simple_rng_lcg<<<thread_blocks, 256>>>(
        p_memory_pool[i].d_B, p_memory_pool[i].n_elements);
    simple_rng_lcg<<<thread_blocks, 256>>>(
        p_memory_pool[i].d_C, p_memory_pool[i].n_elements);
  }
}

void free_and_realloc_tensor_pairs(tensor_pair *tensor_pair, cudaStream_t stream) {
// Older CUDA versions don't know about async malloc and free
#if defined(CUDA_VERSION) && CUDA_VERSION > 11000

  checkCudaStatus(
    cudaFreeAsync(tensor_pair->d_A, stream),
        __LINE__);
  checkCudaStatus(
    cudaFreeAsync(tensor_pair->d_B, stream),
        __LINE__);
  checkCudaStatus(
    cudaFreeAsync(tensor_pair->d_C, stream),
        __LINE__);

  // Allocate device buffers
  uint32_t num_elements = tensor_pair->n_elements;
  checkCudaStatus(
    cudaMallocAsync(
        &tensor_pair->d_A,
        num_elements * sizeof(float),
        stream),
      __LINE__);
  checkCudaStatus(
    cudaMallocAsync(
        &tensor_pair->d_B,
        num_elements * sizeof(float),
        stream),
        __LINE__);
  checkCudaStatus(
    cudaMallocAsync(
        &tensor_pair->d_C,
        num_elements * sizeof(float),
        stream),
        __LINE__);

#else

  checkCudaStatus(cudaFree(tensor_pair->d_A), __LINE__);
  checkCudaStatus(cudaFree(tensor_pair->d_B), __LINE__);
  checkCudaStatus(cudaFree(tensor_pair->d_C), __LINE__);

  // Allocate device buffers
  uint32_t num_elements = tensor_pair->n_elements;
  checkCudaStatus(cudaMalloc(&tensor_pair->d_A,
    num_elements * sizeof(float)),
    __LINE__);
  checkCudaStatus(cudaMalloc(&tensor_pair->d_B,
    num_elements * sizeof(float)),
    __LINE__);
  checkCudaStatus(cudaMalloc(&tensor_pair->d_C,
    num_elements * sizeof(float)),
    __LINE__);

#endif // CUDA_VERSION >= 11000
}

void free_tensor_cache() {
  for (uint32_t i = 0; i < num_tensor_pairs; ++i) {
    checkCudaStatus(cudaFree(p_memory_pool[i].d_A));
    checkCudaStatus(cudaFree(p_memory_pool[i].d_B));
    checkCudaStatus(cudaFree(p_memory_pool[i].d_C));

    if (p_memory_pool[i].h_A) {
      free(p_memory_pool[i].h_A);
    }

    if (p_memory_pool[i].h_B) {
      free(p_memory_pool[i].h_B);
    }
  }

  if (p_memory_pool) {
    free(p_memory_pool);
  }

  size_t mem_free = 0;
  size_t mem_total = 0;
  cudaMemGetInfo(&mem_free, &mem_total);
  size_t mem_used = (mem_total - mem_free) / 1024 / 1024;

  printf("GPU MB after freeing tensor cache: %6zu\n", mem_used);
}

void run_stress_test(
    uint32_t thread_id,
    uint32_t num_workers,
    bool tracing_enabled,
    stress_test_args test_args) {
  // We need to print an output to avoid making the compiler believe
  // that the following is a bunch of dead code.
  float checksum = 0.0;

  // Use a fixed random seed to be deterministic
  srand(RNG_SEED_2);

  // Check memory usage
  size_t mem_free = 0;
  size_t mem_total = 0;
  size_t mem_used_before = 0;
  size_t mem_used_during = 0;
  checkCudaStatus(cudaMemGetInfo(&mem_free, &mem_total), __LINE__);
  mem_used_before = (mem_total - mem_free) / 1024 / 1024;

  // Create multiple streams
  cudaStream_t* v_streams =
      (cudaStream_t*)malloc(test_args.num_cuda_streams * sizeof(cudaStream_t));
  for (uint32_t i = 0; i < test_args.num_cuda_streams; ++i) {
    checkCudaStatus(cudaStreamCreate(v_streams + i), __LINE__);
  }

  // Create output buffer for async downloads
  float* h_output = (float*)malloc(sizeof(float) * test_args.num_operations);
  memset(h_output, 0, test_args.num_operations * sizeof(float));

  // Measure time
  float t_wall_ms = 0.0;
  clock_t begin = clock();

  // Start running the benchmark
  for (uint32_t i = 0; i < test_args.num_operations; ++i) {
    // All good things start with a break. In our case some GPU idle time
    if (test_args.simulate_host_time) {
      uint32_t gpu_idle_us = rand() % (test_args.max_idle_us -
          test_args.min_idle_us) + test_args.min_idle_us;
      usleep(gpu_idle_us);
    }

    // Generate stream ID and tensor pair index
    uint32_t pair_idx = rand() % num_tensor_pairs;
    pair_idx = pair_idx - (pair_idx % num_workers);
    pair_idx += thread_id;
    uint32_t stream_idx = pair_idx % test_args.num_cuda_streams;

    // Check if we do a CUDA malloc
    if (((float)(rand() % 10000) / 10000.0) < test_args.prob_cuda_malloc) {
      free_and_realloc_tensor_pairs(p_memory_pool + pair_idx,
          v_streams[stream_idx]);

      // Initialize device buffers with random values
      uint32_t thread_blocks = p_memory_pool[pair_idx].n_elements / 256;
      simple_rng_lcg<<<thread_blocks, 256, 0, v_streams[stream_idx]>>>(
          p_memory_pool[pair_idx].d_A, p_memory_pool[pair_idx].n_elements);
      simple_rng_lcg<<<thread_blocks, 256, 0, v_streams[stream_idx]>>>(
          p_memory_pool[pair_idx].d_B, p_memory_pool[pair_idx].n_elements);
      simple_rng_lcg<<<thread_blocks, 256, 0, v_streams[stream_idx]>>>(
          p_memory_pool[pair_idx].d_C, p_memory_pool[pair_idx].n_elements);
    }

    // Do a CUDA memcpy if needed
    if (p_memory_pool[pair_idx].b_copy_h2d) {
      checkCudaStatus(
          cudaMemcpyAsync(
              p_memory_pool[pair_idx].d_A,
              p_memory_pool[pair_idx].h_A,
              p_memory_pool[pair_idx].n_elements * sizeof(float),
              cudaMemcpyHostToDevice,
              v_streams[stream_idx]),
          __LINE__);
      checkCudaStatus(
          cudaMemcpyAsync(
              p_memory_pool[pair_idx].d_B,
              p_memory_pool[pair_idx].h_B,
              p_memory_pool[pair_idx].n_elements * sizeof(float),
              cudaMemcpyHostToDevice,
              v_streams[stream_idx]),
          __LINE__);
    }

    // Launch kernel
    uint32_t num_iters_stream =
        rand() % (test_args.max_iters_kernel - test_args.min_iters_kernel) +
            test_args.min_iters_kernel;
    uint32_t thread_blocks = p_memory_pool[pair_idx].n_elements / 256;
    lcg_kernel_input kernel_args;
    kernel_args.d_a = p_memory_pool[pair_idx].d_A;
    kernel_args.d_b = p_memory_pool[pair_idx].d_B;
    kernel_args.d_c = p_memory_pool[pair_idx].d_C;
    kernel_args.len = p_memory_pool[pair_idx].n_elements;
    kernel_args.iters = num_iters_stream;

    call_compute_kernel(thread_blocks, 256, 0, v_streams[stream_idx],
        kernel_args, i);

    // Simulate output download
    if (p_memory_pool[pair_idx].b_copy_d2h) {
      uint32_t rand_index = rand() % p_memory_pool[pair_idx].n_elements;
      checkCudaStatus(
          cudaMemcpyAsync(
              h_output + i,
              p_memory_pool[pair_idx].d_C + rand_index,
              sizeof(float),
              cudaMemcpyDeviceToHost,
              v_streams[stream_idx]),
          __LINE__);
    }

    // Get memory during execution
    if (i % 10000 == 0) {
      checkCudaStatus(cudaMemGetInfo(&mem_free, &mem_total), __LINE__);
      size_t mem_crnt = (mem_total - mem_free) / 1024 / 1024;
      if (mem_crnt >= mem_used_during) {
        mem_used_during = mem_crnt;
      }
    }
  }

  // Synchronize all streams
  for (int i = 0; i < test_args.num_cuda_streams; ++i) {
    checkCudaStatus(cudaStreamSynchronize(v_streams[i]), __LINE__);
  }

  // Measure execution time only until the streams are synchronized.
  // If we measure the time it takes to destroy them we may get high
  // run to run variation.

  clock_t end = clock();
  t_wall_ms = (double)(end - begin) / 1e+3;

  // Destroy the streams to avoid memory leaks
  for (int i = 0; i < test_args.num_cuda_streams; ++i) {
    checkCudaStatus(cudaStreamDestroy(v_streams[i]), __LINE__);
  }

  if (v_streams) {
    free(v_streams);
  }

  // Compute a checksum to have some value as an output of the function
  for (int i = 0; i < test_args.num_operations; ++i) {
    checksum += h_output[i];
  }
  // checksum /= (float)test_args.num_operations;
  free(h_output);

  // Check how much memory we are using
  checkCudaStatus(cudaMemGetInfo(&mem_free, &mem_total), __LINE__);
  size_t mem_used_after = (mem_total - mem_free) / 1024 / 1024;

  printf(
      "Thread Index: %4d; Tracing Enabled: %d; GPU MB at Start: %6zu; Max GPU MB During Run: %6zu; GPU MB at Stop: %6zu; Runtime (ms): %6.3f; Checksum: %.5f\n",
      thread_id,
      tracing_enabled,
      mem_used_before,
      mem_used_during,
      mem_used_after,
      t_wall_ms,
      checksum);
}

// In case CUPTI compresses data using kernel name as a key to a hash map
// we want to see what happens in the case where we have lots of unique
// kernel names. This will make the trace to look like a rainbow.

void call_compute_kernel(
  uint32_t thread_blocks,
  uint32_t threads_per_block,
  uint32_t shmem_sz,
  cudaStream_t stream,
  lcg_kernel_input kernel_args,
  uint32_t op_id
) {
  switch (op_id % 20) {
    case 0:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<0, 1><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 1:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<1, 2><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 2:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<2, 3><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 3:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<3, 4><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 4:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<4, 5><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 5:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<5, 6><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 6:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<6, 7><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 7:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<7, 8><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 8:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<8, 9><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 9:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<9, 10><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 10:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<10, 11><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 11:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<11, 12><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 12:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<12, 13><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 13:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<13, 14><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 14:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<14, 15><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 15:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<15, 16><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 16:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<16, 17><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 17:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<17, 18><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 18:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<18, 19><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 19:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<19, 20><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 20:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<20, 1><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 21:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<21, 2><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 22:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<22, 3><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 23:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<23, 4><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 24:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<24, 5><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 25:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<25, 6><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 26:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<26, 7><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 27:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<27, 8><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 28:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<28, 9><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 29:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<29, 10><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 30:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<30, 11><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 31:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<31, 12><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 32:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<32, 13><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 33:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<33, 14><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 34:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<34, 15><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 35:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<35, 16><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 36:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<36, 17><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 37:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<37, 18><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 38:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<38, 19><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    case 39:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<39, 20><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
    default:
      iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<0, 0><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
      break;
  }
}

} // namespace kineto_stress_test