1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
// (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary.
#include <stdio.h>
#include <unistd.h>
#include "random_ops_stress_test.cuh"
namespace kineto_stress_test {
// Random number generation constants. They should not be modified, otherwise
// it's likely that most values will converge to 0.
#define LCG_A 8121
#define LCG_C 28411
#define LCG_M 134456
#define RNG_SEED_1 1025
#define RNG_SEED_2 2049
// We pre-create a memory pool of buffers on which we do various operations.
// This is similar to the tensor cache that PyTorch is managing.
tensor_pair* p_memory_pool;
// Size of the memory pool in megabytes
uint32_t sz_memory_pool_KB;
// Number of tensor pairs in the memory pool
uint32_t num_tensor_pairs;
// A kernel that fills a device buffer with random values
__global__ void simple_rng_lcg(float* d_A, int num_elements) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid < num_elements) {
uint32_t xn = tid * (tid + 1);
d_A[tid] = (float)((LCG_A * xn + LCG_C) % LCG_M);
}
}
// We are using this to reduce the number of code lines
struct lcg_kernel_input {
float const* __restrict__ d_a;
float const* __restrict__ d_b;
float* __restrict__ d_c;
int len;
int iters;
};
// C = A + B kernel where A and B are generated using a linear
// congruential generator. If the number of iterations is small
// the kernel is memory bandwidth bound. If iterations count is
// high, the kernel is compute bound.
// The kernel name is so long because we wanted to test if the number
// of characters in the kernel name influences the number of
// records that can be kept in the buffer.
// We use the template call to be able to change the kernel name with
// a simple hardcoded constant number
template<uint32_t offset_seed_a, uint32_t offset_seed_b>
__global__ void iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers(lcg_kernel_input input) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < input.len) {
uint32_t seed_a = (uint32_t)input.d_a[idx] + offset_seed_a;
uint32_t seed_b = (uint32_t)input.d_b[idx] + offset_seed_b;
uint32_t xna = 0;
uint32_t xnb = 0;
for (int i = 0; i < input.iters; ++i) {
xna = (LCG_A * seed_a + LCG_C) % LCG_M;
xnb = (LCG_A * seed_b + LCG_C) % LCG_M;
seed_a = xna;
seed_b = xnb;
}
input.d_c[idx] = 0.25 + (float)((xna + xnb) % 1000) / 1000.0;
}
}
// Use this function to vary the kernel name at runtime
void call_compute_kernel(
uint32_t thread_blocks,
uint32_t threads_per_block,
uint32_t shmem_sz,
cudaStream_t stream,
lcg_kernel_input kernel_args,
uint32_t op_id
);
// Fill the buffers on the host with random values
void simple_lcg_host(float* h_A, int num_elements) {
for (int i = 0; i < num_elements; ++i) {
uint32_t xn = i * (i + 1);
h_A[i] = (float)((LCG_A * xn + LCG_C) % LCG_M);
}
}
inline void checkCudaStatus(cudaError_t status, int lineNumber = -1) {
if (status != cudaSuccess) {
printf(
"cuda API failed with status %d: %s at line %d\n",
status,
cudaGetErrorString(status),
lineNumber);
exit(-1);
}
}
void generate_tensor_cache(tensor_cache_args cache_args) {
// Estimate the number of tensor pairs
uint32_t num_pairs_estimated =
cache_args.sz_cache_KB / (3 * (cache_args.sz_max_tensor_KB -
cache_args.sz_min_tensor_KB) / 2);
// Number of actual pairs
num_tensor_pairs = 0;
// At firs the pool is empty
sz_memory_pool_KB = 0;
// Pre-allocate num_pairs_estimated and if num_tensor_pairs comes lower, well,
// that's life
p_memory_pool =
(tensor_pair*)malloc(num_pairs_estimated * sizeof(tensor_pair));
// Start creating the pool
srand(RNG_SEED_1);
for (int i = 0; i < num_pairs_estimated; ++i) {
uint32_t num_KB =
rand() % (cache_args.sz_max_tensor_KB - cache_args.sz_min_tensor_KB) +
cache_args.sz_min_tensor_KB;
uint32_t num_elements = num_KB * 1024 / sizeof(float);
// Allocate device buffers
p_memory_pool[i].n_elements = num_elements;
checkCudaStatus(
cudaMalloc(&p_memory_pool[i].d_A, num_elements * sizeof(float)));
checkCudaStatus(
cudaMalloc(&p_memory_pool[i].d_B, num_elements * sizeof(float)));
checkCudaStatus(
cudaMalloc(&p_memory_pool[i].d_C, num_elements * sizeof(float)));
// Initialize device buffers with random values
uint32_t thread_blocks = num_elements / 256;
simple_rng_lcg<<<thread_blocks, 256>>>(
p_memory_pool[i].d_A, p_memory_pool[i].n_elements);
simple_rng_lcg<<<thread_blocks, 256>>>(
p_memory_pool[i].d_B, p_memory_pool[i].n_elements);
simple_rng_lcg<<<thread_blocks, 256>>>(
p_memory_pool[i].d_C, p_memory_pool[i].n_elements);
// Throw a dice to see if we will do memcopy device to host for this one
if (((float)(rand() % 10000) / 10000.0) < cache_args.prob_h2d) {
p_memory_pool[i].b_copy_h2d = true;
p_memory_pool[i].h_A = (float*)malloc(num_elements * sizeof(float));
p_memory_pool[i].h_B = (float*)malloc(num_elements * sizeof(float));
simple_lcg_host(p_memory_pool[i].h_A, num_elements);
simple_lcg_host(p_memory_pool[i].h_B, num_elements);
} else {
p_memory_pool[i].b_copy_h2d = false;
p_memory_pool[i].h_A = NULL;
p_memory_pool[i].h_B = NULL;
}
// Simulate output download
if (((float)(rand() % 10000) / 10000.0) < cache_args.prob_d2h) {
p_memory_pool[i].b_copy_d2h = true;
} else {
p_memory_pool[i].b_copy_d2h = false;
}
// Now we have a new tensor pair
num_tensor_pairs++;
sz_memory_pool_KB += (3 * num_KB);
// If we allocated too much, just exit
if (sz_memory_pool_KB >= cache_args.sz_cache_KB) {
printf("Allocated %d tensor pairs.\n", num_tensor_pairs);
break;
}
}
}
void re_initialize_buffer_values() {
for (uint32_t i = 0; i < num_tensor_pairs; ++i) {
uint32_t num_elements = p_memory_pool[i].n_elements;
// Initialize device buffers with random values
uint32_t thread_blocks = num_elements / 256;
simple_rng_lcg<<<thread_blocks, 256>>>(
p_memory_pool[i].d_A, p_memory_pool[i].n_elements);
simple_rng_lcg<<<thread_blocks, 256>>>(
p_memory_pool[i].d_B, p_memory_pool[i].n_elements);
simple_rng_lcg<<<thread_blocks, 256>>>(
p_memory_pool[i].d_C, p_memory_pool[i].n_elements);
}
}
void free_and_realloc_tensor_pairs(tensor_pair *tensor_pair, cudaStream_t stream) {
// Older CUDA versions don't know about async malloc and free
#if defined(CUDA_VERSION) && CUDA_VERSION > 11000
checkCudaStatus(
cudaFreeAsync(tensor_pair->d_A, stream),
__LINE__);
checkCudaStatus(
cudaFreeAsync(tensor_pair->d_B, stream),
__LINE__);
checkCudaStatus(
cudaFreeAsync(tensor_pair->d_C, stream),
__LINE__);
// Allocate device buffers
uint32_t num_elements = tensor_pair->n_elements;
checkCudaStatus(
cudaMallocAsync(
&tensor_pair->d_A,
num_elements * sizeof(float),
stream),
__LINE__);
checkCudaStatus(
cudaMallocAsync(
&tensor_pair->d_B,
num_elements * sizeof(float),
stream),
__LINE__);
checkCudaStatus(
cudaMallocAsync(
&tensor_pair->d_C,
num_elements * sizeof(float),
stream),
__LINE__);
#else
checkCudaStatus(cudaFree(tensor_pair->d_A), __LINE__);
checkCudaStatus(cudaFree(tensor_pair->d_B), __LINE__);
checkCudaStatus(cudaFree(tensor_pair->d_C), __LINE__);
// Allocate device buffers
uint32_t num_elements = tensor_pair->n_elements;
checkCudaStatus(cudaMalloc(&tensor_pair->d_A,
num_elements * sizeof(float)),
__LINE__);
checkCudaStatus(cudaMalloc(&tensor_pair->d_B,
num_elements * sizeof(float)),
__LINE__);
checkCudaStatus(cudaMalloc(&tensor_pair->d_C,
num_elements * sizeof(float)),
__LINE__);
#endif // CUDA_VERSION >= 11000
}
void free_tensor_cache() {
for (uint32_t i = 0; i < num_tensor_pairs; ++i) {
checkCudaStatus(cudaFree(p_memory_pool[i].d_A));
checkCudaStatus(cudaFree(p_memory_pool[i].d_B));
checkCudaStatus(cudaFree(p_memory_pool[i].d_C));
if (p_memory_pool[i].h_A) {
free(p_memory_pool[i].h_A);
}
if (p_memory_pool[i].h_B) {
free(p_memory_pool[i].h_B);
}
}
if (p_memory_pool) {
free(p_memory_pool);
}
size_t mem_free = 0;
size_t mem_total = 0;
cudaMemGetInfo(&mem_free, &mem_total);
size_t mem_used = (mem_total - mem_free) / 1024 / 1024;
printf("GPU MB after freeing tensor cache: %6zu\n", mem_used);
}
void run_stress_test(
uint32_t thread_id,
uint32_t num_workers,
bool tracing_enabled,
stress_test_args test_args) {
// We need to print an output to avoid making the compiler believe
// that the following is a bunch of dead code.
float checksum = 0.0;
// Use a fixed random seed to be deterministic
srand(RNG_SEED_2);
// Check memory usage
size_t mem_free = 0;
size_t mem_total = 0;
size_t mem_used_before = 0;
size_t mem_used_during = 0;
checkCudaStatus(cudaMemGetInfo(&mem_free, &mem_total), __LINE__);
mem_used_before = (mem_total - mem_free) / 1024 / 1024;
// Create multiple streams
cudaStream_t* v_streams =
(cudaStream_t*)malloc(test_args.num_cuda_streams * sizeof(cudaStream_t));
for (uint32_t i = 0; i < test_args.num_cuda_streams; ++i) {
checkCudaStatus(cudaStreamCreate(v_streams + i), __LINE__);
}
// Create output buffer for async downloads
float* h_output = (float*)malloc(sizeof(float) * test_args.num_operations);
memset(h_output, 0, test_args.num_operations * sizeof(float));
// Measure time
float t_wall_ms = 0.0;
clock_t begin = clock();
// Start running the benchmark
for (uint32_t i = 0; i < test_args.num_operations; ++i) {
// All good things start with a break. In our case some GPU idle time
if (test_args.simulate_host_time) {
uint32_t gpu_idle_us = rand() % (test_args.max_idle_us -
test_args.min_idle_us) + test_args.min_idle_us;
usleep(gpu_idle_us);
}
// Generate stream ID and tensor pair index
uint32_t pair_idx = rand() % num_tensor_pairs;
pair_idx = pair_idx - (pair_idx % num_workers);
pair_idx += thread_id;
uint32_t stream_idx = pair_idx % test_args.num_cuda_streams;
// Check if we do a CUDA malloc
if (((float)(rand() % 10000) / 10000.0) < test_args.prob_cuda_malloc) {
free_and_realloc_tensor_pairs(p_memory_pool + pair_idx,
v_streams[stream_idx]);
// Initialize device buffers with random values
uint32_t thread_blocks = p_memory_pool[pair_idx].n_elements / 256;
simple_rng_lcg<<<thread_blocks, 256, 0, v_streams[stream_idx]>>>(
p_memory_pool[pair_idx].d_A, p_memory_pool[pair_idx].n_elements);
simple_rng_lcg<<<thread_blocks, 256, 0, v_streams[stream_idx]>>>(
p_memory_pool[pair_idx].d_B, p_memory_pool[pair_idx].n_elements);
simple_rng_lcg<<<thread_blocks, 256, 0, v_streams[stream_idx]>>>(
p_memory_pool[pair_idx].d_C, p_memory_pool[pair_idx].n_elements);
}
// Do a CUDA memcpy if needed
if (p_memory_pool[pair_idx].b_copy_h2d) {
checkCudaStatus(
cudaMemcpyAsync(
p_memory_pool[pair_idx].d_A,
p_memory_pool[pair_idx].h_A,
p_memory_pool[pair_idx].n_elements * sizeof(float),
cudaMemcpyHostToDevice,
v_streams[stream_idx]),
__LINE__);
checkCudaStatus(
cudaMemcpyAsync(
p_memory_pool[pair_idx].d_B,
p_memory_pool[pair_idx].h_B,
p_memory_pool[pair_idx].n_elements * sizeof(float),
cudaMemcpyHostToDevice,
v_streams[stream_idx]),
__LINE__);
}
// Launch kernel
uint32_t num_iters_stream =
rand() % (test_args.max_iters_kernel - test_args.min_iters_kernel) +
test_args.min_iters_kernel;
uint32_t thread_blocks = p_memory_pool[pair_idx].n_elements / 256;
lcg_kernel_input kernel_args;
kernel_args.d_a = p_memory_pool[pair_idx].d_A;
kernel_args.d_b = p_memory_pool[pair_idx].d_B;
kernel_args.d_c = p_memory_pool[pair_idx].d_C;
kernel_args.len = p_memory_pool[pair_idx].n_elements;
kernel_args.iters = num_iters_stream;
call_compute_kernel(thread_blocks, 256, 0, v_streams[stream_idx],
kernel_args, i);
// Simulate output download
if (p_memory_pool[pair_idx].b_copy_d2h) {
uint32_t rand_index = rand() % p_memory_pool[pair_idx].n_elements;
checkCudaStatus(
cudaMemcpyAsync(
h_output + i,
p_memory_pool[pair_idx].d_C + rand_index,
sizeof(float),
cudaMemcpyDeviceToHost,
v_streams[stream_idx]),
__LINE__);
}
// Get memory during execution
if (i % 10000 == 0) {
checkCudaStatus(cudaMemGetInfo(&mem_free, &mem_total), __LINE__);
size_t mem_crnt = (mem_total - mem_free) / 1024 / 1024;
if (mem_crnt >= mem_used_during) {
mem_used_during = mem_crnt;
}
}
}
// Synchronize all streams
for (int i = 0; i < test_args.num_cuda_streams; ++i) {
checkCudaStatus(cudaStreamSynchronize(v_streams[i]), __LINE__);
}
// Measure execution time only until the streams are synchronized.
// If we measure the time it takes to destroy them we may get high
// run to run variation.
clock_t end = clock();
t_wall_ms = (double)(end - begin) / 1e+3;
// Destroy the streams to avoid memory leaks
for (int i = 0; i < test_args.num_cuda_streams; ++i) {
checkCudaStatus(cudaStreamDestroy(v_streams[i]), __LINE__);
}
if (v_streams) {
free(v_streams);
}
// Compute a checksum to have some value as an output of the function
for (int i = 0; i < test_args.num_operations; ++i) {
checksum += h_output[i];
}
// checksum /= (float)test_args.num_operations;
free(h_output);
// Check how much memory we are using
checkCudaStatus(cudaMemGetInfo(&mem_free, &mem_total), __LINE__);
size_t mem_used_after = (mem_total - mem_free) / 1024 / 1024;
printf(
"Thread Index: %4d; Tracing Enabled: %d; GPU MB at Start: %6zu; Max GPU MB During Run: %6zu; GPU MB at Stop: %6zu; Runtime (ms): %6.3f; Checksum: %.5f\n",
thread_id,
tracing_enabled,
mem_used_before,
mem_used_during,
mem_used_after,
t_wall_ms,
checksum);
}
// In case CUPTI compresses data using kernel name as a key to a hash map
// we want to see what happens in the case where we have lots of unique
// kernel names. This will make the trace to look like a rainbow.
void call_compute_kernel(
uint32_t thread_blocks,
uint32_t threads_per_block,
uint32_t shmem_sz,
cudaStream_t stream,
lcg_kernel_input kernel_args,
uint32_t op_id
) {
switch (op_id % 20) {
case 0:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<0, 1><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 1:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<1, 2><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 2:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<2, 3><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 3:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<3, 4><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 4:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<4, 5><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 5:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<5, 6><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 6:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<6, 7><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 7:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<7, 8><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 8:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<8, 9><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 9:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<9, 10><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 10:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<10, 11><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 11:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<11, 12><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 12:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<12, 13><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 13:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<13, 14><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 14:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<14, 15><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 15:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<15, 16><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 16:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<16, 17><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 17:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<17, 18><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 18:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<18, 19><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 19:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<19, 20><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 20:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<20, 1><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 21:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<21, 2><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 22:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<22, 3><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 23:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<23, 4><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 24:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<24, 5><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 25:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<25, 6><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 26:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<26, 7><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 27:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<27, 8><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 28:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<28, 9><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 29:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<29, 10><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 30:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<30, 11><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 31:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<31, 12><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 32:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<32, 13><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 33:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<33, 14><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 34:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<34, 15><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 35:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<35, 16><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 36:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<36, 17><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 37:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<37, 18><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 38:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<38, 19><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
case 39:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<39, 20><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
default:
iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers_iterative_lcg_3_buffers<0, 0><<<thread_blocks, threads_per_block, 0, stream>>>(kernel_args);
break;
}
}
} // namespace kineto_stress_test
|