1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
// (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary.
#include <string>
#include <fmt/format.h>
#include <gtest/gtest.h>
#include <cuda.h>
// TODO(T90238193)
// @lint-ignore-every CLANGTIDY facebook-hte-RelativeInclude
#include "src/Logger.h"
#include "src/CuptiRangeProfilerApi.h"
#define DRIVER_API_CALL(apiFuncCall) \
do { \
CUresult _status = apiFuncCall; \
if (_status != CUDA_SUCCESS) { \
LOG(ERROR) << "Failed invoking CUDA driver function " \
<< #apiFuncCall << " status = " \
<< _status; \
exit(-1); \
} \
} while (0)
#define EXPECT(expr)\
if (!(expr)) {\
};
using namespace KINETO_NAMESPACE;
static int numRanges = 1;
using Type = double;
// Device code
__global__ void VecAdd(const Type* A, const Type* B, Type* C, int N) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) {
C[i] = A[i] + B[i];
}
}
// Device code
__global__ void VecSub(const Type* A, const Type* B, Type* C, int N) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) {
C[i] = A[i] - B[i];
}
}
static void initVec(Type* vec, int n) {
for (int i = 0; i < n; i++) {
vec[i] = i;
}
}
static void cleanUp(
Type* h_A,
Type* h_B,
Type* h_C,
Type* h_D,
Type* d_A,
Type* d_B,
Type* d_C,
Type* d_D) {
if (d_A)
cudaFree(d_A);
if (d_B)
cudaFree(d_B);
if (d_C)
cudaFree(d_C);
if (d_D)
cudaFree(d_D);
// Free host memory
if (h_A)
free(h_A);
if (h_B)
free(h_B);
if (h_C)
free(h_C);
if (h_D)
free(h_D);
}
/* Benchmark application used to test profiler measurements
* This simply runs two kernels vector Add and Vector Subtract
*/
void VectorAddSubtract() {
int N = 50000;
size_t size = N * sizeof(Type);
int threadsPerBlock = 0;
int blocksPerGrid = 0;
Type *h_A, *h_B, *h_C, *h_D;
Type *d_A, *d_B, *d_C, *d_D;
int i;
Type sum, diff;
// Allocate input vectors h_A and h_B in host memory
h_A = (Type*)malloc(size);
h_B = (Type*)malloc(size);
h_C = (Type*)malloc(size);
h_D = (Type*)malloc(size);
// Initialize input vectors
initVec(h_A, N);
initVec(h_B, N);
memset(h_C, 0, size);
memset(h_D, 0, size);
// Allocate vectors in device memory
cudaMalloc((void**)&d_A, size);
cudaMalloc((void**)&d_B, size);
cudaMalloc((void**)&d_C, size);
cudaMalloc((void**)&d_D, size);
// Copy vectors from host memory to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
// Invoke kernel
threadsPerBlock = 256;
blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
LOG(INFO) << fmt::format(
"Launching kernel: blocks {}, thread/block {}",
blocksPerGrid,
threadsPerBlock);
VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
VecSub<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_D, N);
// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
cudaMemcpy(h_D, d_D, size, cudaMemcpyDeviceToHost);
// Verify result
for (i = 0; i < N; ++i) {
sum = h_A[i] + h_B[i];
diff = h_A[i] - h_B[i];
if (h_C[i] != sum || h_D[i] != diff) {
LOG(ERROR) << "Result verification failed";
break;
}
}
cleanUp(h_A, h_B, h_C, h_D, d_A, d_B, d_C, d_D);
}
#if HAS_CUPTI_RANGE_PROFILER
bool runTestWithAutoRange(
int deviceNum,
const std::vector<std::string>& metricNames,
CUcontext cuContext,
bool async) {
// create a CUPTI range based profiling profiler
// this configures the counter data as well
CuptiRangeProfilerOptions opts{
.metricNames = metricNames,
.deviceId = deviceNum,
.maxRanges = 2,
.numNestingLevels = 1,
.cuContext = async ? nullptr : cuContext
};
CuptiRBProfilerSession profiler(opts);
CUpti_ProfilerRange profilerRange = CUPTI_AutoRange;
CUpti_ProfilerReplayMode profilerReplayMode = CUPTI_KernelReplay;
if (async) {
profiler.asyncStartAndEnable(profilerRange, profilerReplayMode);
} else {
profiler.start(profilerRange, profilerReplayMode);
profiler.enable();
}
VectorAddSubtract();
if (!async) {
profiler.disable();
// stop profiler
profiler.stop();
} else {
profiler.asyncDisableAndStop();
}
auto result = profiler.evaluateMetrics(true);
// check results
EXPECT_EQ(result.metricNames.size(), 3);
EXPECT_EQ(result.rangeVals.size(), 2);
for (const auto& measurement : result.rangeVals) {
EXPECT_EQ(measurement.values.size(), 3);
if (measurement.values.size() == 3) {
// smsp__warps_launched.avg
EXPECT_NE(measurement.values[0], 0);
// smsp__sass_thread_inst_executed_op_dadd_pred_on.sum
// each kernel has 50000 dadd ops
EXPECT_EQ(measurement.values[1], 50000);
// sm__inst_executed_pipe_tensor.sum
//EXPECT_EQ(measurement.values[2], 0);
}
}
return true;
}
bool runTestWithUserRange(
int deviceNum,
const std::vector<std::string>& metricNames,
CUcontext cuContext,
bool async = false) {
// create a CUPTI range based profiling profiler
// this configures the counter data as well
CuptiRangeProfilerOptions opts{
.metricNames = metricNames,
.deviceId = deviceNum,
.maxRanges = numRanges,
.numNestingLevels = 1,
.cuContext = async ? nullptr : cuContext
};
CuptiRBProfilerSession profiler(opts);
CUpti_ProfilerRange profilerRange = CUPTI_UserRange;
CUpti_ProfilerReplayMode profilerReplayMode = CUPTI_UserReplay;
if (async) {
profiler.asyncStartAndEnable(profilerRange, profilerReplayMode);
{ VectorAddSubtract(); }
profiler.disableAndStop();
} else {
profiler.start(profilerRange, profilerReplayMode);
/* User takes the resposiblity of replaying the kernel launches */
bool replay = true;
do {
profiler.beginPass();
{
profiler.enable();
std::string rangeName = "vecAddSub";
profiler.pushRange(rangeName);
{ VectorAddSubtract(); }
profiler.popRange();
profiler.disable();
}
LOG(INFO) << "Replay starting.";
replay = profiler.endPass();
} while (!replay);
// stop profiler
profiler.stop();
}
VectorAddSubtract();
auto result = profiler.evaluateMetrics(true);
// check results
EXPECT_EQ(result.metricNames.size(), 3);
EXPECT_EQ(result.rangeVals.size(), 1);
if (result.rangeVals.size() > 0) {
const auto& measurement = result.rangeVals[0];
EXPECT_EQ(measurement.values.size(), 3);
if (measurement.values.size() == 3) {
// smsp__warps_launched.avg
EXPECT_NE(measurement.values[0], 0);
// smsp__sass_thread_inst_executed_op_dadd_pred_on.sum
// in async mode multiple passes are not supported yet
if (!async) {
EXPECT_EQ(measurement.values[1], 100000);
}
// sm__inst_executed_pipe_tensor.sum
//EXPECT_EQ(measurement.values[2], 0);
}
}
return true;
}
#endif // HAS_CUPTI_RANGE_PROFILER
int main(int argc, char* argv[]) {
CUdevice cuDevice;
int deviceCount, deviceNum;
int computeCapabilityMajor = 0, computeCapabilityMinor = 0;
printf("Usage: %s [device_num]\n", argv[0]);
DRIVER_API_CALL(cuInit(0));
DRIVER_API_CALL(cuDeviceGetCount(&deviceCount));
if (deviceCount == 0) {
LOG(ERROR) << "There is no device supporting CUDA.";
return -2;
}
if (argc > 1)
deviceNum = atoi(argv[1]);
else
deviceNum = 0;
LOG(INFO) << "CUDA Device Number: " << deviceNum;
DRIVER_API_CALL(cuDeviceGet(&cuDevice, deviceNum));
DRIVER_API_CALL(cuDeviceGetAttribute(
&computeCapabilityMajor,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR,
cuDevice));
DRIVER_API_CALL(cuDeviceGetAttribute(
&computeCapabilityMinor,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR,
cuDevice));
LOG(INFO) << "Compute Cabapbility = "
<< fmt::format("{},{}",computeCapabilityMajor, computeCapabilityMinor);
if (computeCapabilityMajor < 7) {
LOG(ERROR) << "CUPTI Profiler is not supported with compute capability < 7.0";
return -2;
}
CuptiRBProfilerSession::staticInit();
// metrics to profile
std::vector<std::string> metricNames = {
"smsp__warps_launched.avg",
"smsp__sass_thread_inst_executed_op_dadd_pred_on.sum",
"sm__inst_executed_pipe_tensor.sum",
};
CUcontext cuContext;
DRIVER_API_CALL(cuCtxCreate(&cuContext, 0, cuDevice));
VectorAddSubtract();
#if HAS_CUPTI_RANGE_PROFILER
CuptiRBProfilerSession::staticInit();
if (!runTestWithUserRange(deviceNum, metricNames, cuContext, false)) {
LOG(ERROR) << "Failed to profiler test benchmark in user range";
} else if (!runTestWithAutoRange(deviceNum, metricNames, cuContext, false)) {
LOG(ERROR) << "Failed to profiler test benchmark in auto range";
} else if (!runTestWithUserRange(deviceNum, metricNames, cuContext, true)) {
LOG(ERROR) << "Failed to profiler test benchmark in user range async";
} else if (!runTestWithAutoRange(deviceNum, metricNames, cuContext, true)) {
LOG(ERROR) << "Failed to profiler test benchmark in auto range async";
}
CuptiRBProfilerSession::deInitCupti();
#else
LOG(WARNING) << "CuptiRBProfilerSession is not supported.";
#endif // HAS_CUPTI_RANGE_PROFILER
DRIVER_API_CALL(cuCtxDestroy(cuContext));
return 0;
}
|