File: installation.md

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (73 lines) | stat: -rw-r--r-- 2,879 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
## Building Caffe2

This guide builds from source. For alternatives, refer to https://caffe2.ai/docs/getting-started.html

Get latest source from GitHub.

    git clone --recursive https://github.com/caffe2/caffe2.git
    cd caffe2

Note that you might need to uninstall existing Eigen and pybind11 packages due to compile-time dependencies when building from source. For this reason, Caffe2 uses git submodules to reference external packages in the third_party folder. These are downloaded with the --recursive option.

#### MacOS X

    brew install openblas glog gtest automake protobuf leveled lmdb
    mkdir build && cd build
    cmake .. -DBLAS=OpenBLAS -DUSE_OPENCV=off
    make

#### Ubuntu

###### Ubuntu 14.04 LTS
    sudo apt-get install libprotobuf-dev protobuf-compiler libatlas-base-dev libgoogle-glog-dev libgtest-dev liblmdb-dev libleveldb-dev libsnappy-dev python-dev python-pip libiomp-dev libopencv-dev libpthread-stubs0-dev cmake
    sudo pip install numpy
    wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_8.0.44-1_amd64.deb
    sudo dpkg -i cuda-repo-ubuntu1404_8.0.44-1_amd64.deb
    sudo apt-get update
    sudo apt-get install cuda
    sudo apt-get install git

    CUDNN_URL="http://developer.download.nvidia.com/compute/redist/cudnn/v5.1/cudnn-8.0-linux-x64-v5.1.tgz" &&
    curl -fsSL ${CUDNN_URL} -O &&
    sudo tar -xzf cudnn-8.0-linux-x64-v5.1.tgz -C /usr/local &&
    rm cudnn-8.0-linux-x64-v5.1.tgz &&
    sudo ldconfig

    mkdir build && cd build
    cmake ..
    make

###### Ubuntu 16.04 LTS
    sudo apt-get install libprotobuf-dev protobuf-compiler libatlas-base-dev libgoogle-glog-dev libgtest-dev liblmdb-dev libleveldb-dev libsnappy-dev python-dev python-pip libiomp-dev libopencv-dev libpthread-stubs0-dev cmake
    sudo pip install numpy
    wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
    sudo dpkg -i cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
    sudo apt-get update
    sudo apt-get install cuda
    sudo apt-get install git

    CUDNN_URL="http://developer.download.nvidia.com/compute/redist/cudnn/v5.1/cudnn-8.0-linux-x64-v5.1.tgz" &&
    curl -fsSL ${CUDNN_URL} -O &&
    sudo tar -xzf cudnn-8.0-linux-x64-v5.1.tgz -C /usr/local &&
    rm cudnn-8.0-linux-x64-v5.1.tgz &&
    sudo ldconfig

    mkdir build && cd build
    cmake ..
    make

## Python support

To use Caffe2 in Python, you need two libraries, future and six.

    pip install future six

To run the tutorials, download additional source from GitHub.

    git clone --recursive https://github.com/caffe2/tutorials.git caffe2_tutorials
    cd caffe2_tutorials

You'll also need jupyter (formerly ipython) notebooks and matplotlib, which can be installed on MacOS X with

    brew install matplotlib --with-python3
    pip install jupyter