File: jit.rst

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (892 lines) | stat: -rw-r--r-- 30,524 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
TorchScript
===========

.. toctree::
   :maxdepth: 1
   :caption: Builtin Functions
   :hidden:

   torch.jit.supported_ops <jit_builtin_functions>


.. toctree::
    :maxdepth: 1
    :caption: Language Reference
    :hidden:

    jit_language_reference


.. toctree::
    :maxdepth: 1

    jit_language_reference_v2


.. contents:: :local:
    :depth: 2

.. automodule:: torch.jit
.. currentmodule:: torch.jit

TorchScript is a way to create serializable and optimizable models from PyTorch code.
Any TorchScript program can be saved from a Python
process and loaded in a process where there is no Python dependency.

We provide tools to incrementally transition a model from a pure Python program
to a TorchScript program that can be run independently from Python, such as in a standalone C++ program.
This makes it possible to train models in PyTorch using familiar tools in Python and then export
the model via TorchScript to a production environment where Python programs may be disadvantageous
for performance and multi-threading reasons.

For a gentle introduction to TorchScript, see the `Introduction to TorchScript <https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html>`_ tutorial.

For an end-to-end example of converting a PyTorch model to TorchScript and running it in C++, see the
`Loading a PyTorch Model in C++ <https://pytorch.org/tutorials/advanced/cpp_export.html>`_ tutorial.

Creating TorchScript Code
--------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    script
    trace
    script_if_tracing
    trace_module
    fork
    wait
    ScriptModule
    ScriptFunction
    freeze
    optimize_for_inference
    enable_onednn_fusion
    onednn_fusion_enabled
    set_fusion_strategy
    strict_fusion
    save
    load
    ignore
    unused
    isinstance
    Attribute
    annotate

Mixing Tracing and Scripting
----------------------------

In many cases either tracing or scripting is an easier approach for converting a model to TorchScript.
Tracing and scripting can be composed to suit the particular requirements
of a part of a model.

Scripted functions can call traced functions. This is particularly useful when you need
to use control-flow around a simple feed-forward model. For instance the beam search
of a sequence to sequence model will typically be written in script but can call an
encoder module generated using tracing.


.. testsetup::

    # These are hidden from the docs, but these are necessary for `doctest`
    # since the `inspect` module doesn't play nicely with the execution
    # environment for `doctest`
    import torch

    original_script = torch.jit.script
    def script_wrapper(obj, *args, **kwargs):
        obj.__module__ = 'FakeMod'
        return original_script(obj, *args, **kwargs)

    torch.jit.script = script_wrapper

    original_trace = torch.jit.trace
    def trace_wrapper(obj, *args, **kwargs):
        obj.__module__ = 'FakeMod'
        return original_trace(obj, *args, **kwargs)

    torch.jit.trace = trace_wrapper


Example (calling a traced function in script):

.. testcode::

    import torch

    def foo(x, y):
        return 2 * x + y

    traced_foo = torch.jit.trace(foo, (torch.rand(3), torch.rand(3)))

    @torch.jit.script
    def bar(x):
        return traced_foo(x, x)

Traced functions can call script functions. This is useful when a small part of
a model requires some control-flow even though most of the model is just a feed-forward
network. Control-flow inside of a script function called by a traced function is
preserved correctly.

Example (calling a script function in a traced function):

.. testcode::

    import torch

    @torch.jit.script
    def foo(x, y):
        if x.max() > y.max():
            r = x
        else:
            r = y
        return r


    def bar(x, y, z):
        return foo(x, y) + z

    traced_bar = torch.jit.trace(bar, (torch.rand(3), torch.rand(3), torch.rand(3)))

This composition also works for ``nn.Module``\s as well, where it can be used to generate
a submodule using tracing that can be called from the methods of a script module.

Example (using a traced module):

.. testcode::
    :skipif: torchvision is None

    import torch
    import torchvision

    class MyScriptModule(torch.nn.Module):
        def __init__(self):
            super(MyScriptModule, self).__init__()
            self.means = torch.nn.Parameter(torch.tensor([103.939, 116.779, 123.68])
                                            .resize_(1, 3, 1, 1))
            self.resnet = torch.jit.trace(torchvision.models.resnet18(),
                                          torch.rand(1, 3, 224, 224))

        def forward(self, input):
            return self.resnet(input - self.means)

    my_script_module = torch.jit.script(MyScriptModule())


TorchScript Language
--------------------

TorchScript is a statically typed subset of Python, so many Python features apply
directly to TorchScript. See the full :ref:`language-reference` for details.


.. _builtin functions:

Built-in Functions and Modules
------------------------------

TorchScript supports the use of most PyTorch functions and many Python built-ins.
See :ref:`builtin-functions` for a full reference of supported functions.

PyTorch Functions and Modules
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TorchScript supports a subset of the tensor and neural network
functions that PyTorch provides. Most methods on Tensor as well as functions in
the ``torch`` namespace, all functions in ``torch.nn.functional`` and
most modules from ``torch.nn`` are supported in TorchScript.

See :ref:`jit_unsupported` for a list of unsupported PyTorch functions and modules.


Python Functions and Modules
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Many of Python's `built-in functions <https://docs.python.org/3/library/functions.html>`_ are supported in TorchScript.
The :any:`math` module is also supported (see :ref:`math-module` for details), but no other Python modules
(built-in or third party) are supported.


Python Language Reference Comparison
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For a full listing of supported Python features, see :ref:`python-language-reference`.

Debugging
---------

.. _`disable TorchScript`:

Disable JIT for Debugging
~~~~~~~~~~~~~~~~~~~~~~~~~
.. envvar:: PYTORCH_JIT

Setting the environment variable ``PYTORCH_JIT=0`` will disable all script
and tracing annotations. If there is hard-to-debug error in one of your
TorchScript models, you can use this flag to force everything to run using native
Python. Since TorchScript (scripting and tracing) is disabled with this flag,
you can use tools like ``pdb`` to debug the model code.  For example::

    @torch.jit.script
    def scripted_fn(x : torch.Tensor):
        for i in range(12):
            x = x + x
        return x

    def fn(x):
        x = torch.neg(x)
        import pdb; pdb.set_trace()
        return scripted_fn(x)

    traced_fn = torch.jit.trace(fn, (torch.rand(4, 5),))
    traced_fn(torch.rand(3, 4))

Debugging this script with ``pdb`` works except for when we invoke the
:func:`@torch.jit.script <torch.jit.script>` function. We can globally disable
JIT, so that we can call the :func:`@torch.jit.script <torch.jit.script>`
function as a normal Python function and not compile it. If the above script
is called ``disable_jit_example.py``, we can invoke it like so::

    $ PYTORCH_JIT=0 python disable_jit_example.py

and we will be able to step into the :func:`@torch.jit.script
<torch.jit.script>` function as a normal Python function. To disable the
TorchScript compiler for a specific function, see
:func:`@torch.jit.ignore <torch.jit.ignore>`.

.. _inspecting-code:

Inspecting Code
~~~~~~~~~~~~~~~

TorchScript provides a code pretty-printer for all :class:`ScriptModule` instances. This
pretty-printer gives an interpretation of the script method's code as valid
Python syntax. For example:

.. testcode::

    @torch.jit.script
    def foo(len):
        # type: (int) -> torch.Tensor
        rv = torch.zeros(3, 4)
        for i in range(len):
            if i < 10:
                rv = rv - 1.0
            else:
                rv = rv + 1.0
        return rv

    print(foo.code)

.. testoutput::
    :hide:

    ...

A :class:`ScriptModule` with a single ``forward`` method will have an attribute
``code``, which you can use to inspect the :class:`ScriptModule`'s code.
If the :class:`ScriptModule` has more than one method, you will need to access
``.code`` on the method itself and not the module. We can inspect the
code of a method named ``foo`` on a :class:`ScriptModule` by accessing ``.foo.code``.
The example above produces this output: ::

    def foo(len: int) -> Tensor:
        rv = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
        rv0 = rv
        for i in range(len):
            if torch.lt(i, 10):
                rv1 = torch.sub(rv0, 1., 1)
            else:
                rv1 = torch.add(rv0, 1., 1)
            rv0 = rv1
        return rv0

This is TorchScript's compilation of the code for the ``forward`` method.
You can use this to ensure TorchScript (tracing or scripting) has captured
your model code correctly.


.. _interpreting-graphs:

Interpreting Graphs
~~~~~~~~~~~~~~~~~~~
TorchScript also has a representation at a lower level than the code pretty-
printer, in the form of IR graphs.

TorchScript uses a static single assignment (SSA) intermediate representation
(IR) to represent computation. The instructions in this format consist of
ATen (the C++ backend of PyTorch) operators and other primitive operators,
including control flow operators for loops and conditionals. As an example:

.. testcode::

    @torch.jit.script
    def foo(len):
        # type: (int) -> torch.Tensor
        rv = torch.zeros(3, 4)
        for i in range(len):
            if i < 10:
                rv = rv - 1.0
            else:
                rv = rv + 1.0
        return rv

    print(foo.graph)

.. testoutput::
    :hide:

    ...

``graph`` follows the same rules described in the :ref:`inspecting-code` section
with regard to ``forward`` method lookup.

The example script above produces the graph::

    graph(%len.1 : int):
      %24 : int = prim::Constant[value=1]()
      %17 : bool = prim::Constant[value=1]() # test.py:10:5
      %12 : bool? = prim::Constant()
      %10 : Device? = prim::Constant()
      %6 : int? = prim::Constant()
      %1 : int = prim::Constant[value=3]() # test.py:9:22
      %2 : int = prim::Constant[value=4]() # test.py:9:25
      %20 : int = prim::Constant[value=10]() # test.py:11:16
      %23 : float = prim::Constant[value=1]() # test.py:12:23
      %4 : int[] = prim::ListConstruct(%1, %2)
      %rv.1 : Tensor = aten::zeros(%4, %6, %6, %10, %12) # test.py:9:10
      %rv : Tensor = prim::Loop(%len.1, %17, %rv.1) # test.py:10:5
        block0(%i.1 : int, %rv.14 : Tensor):
          %21 : bool = aten::lt(%i.1, %20) # test.py:11:12
          %rv.13 : Tensor = prim::If(%21) # test.py:11:9
            block0():
              %rv.3 : Tensor = aten::sub(%rv.14, %23, %24) # test.py:12:18
              -> (%rv.3)
            block1():
              %rv.6 : Tensor = aten::add(%rv.14, %23, %24) # test.py:14:18
              -> (%rv.6)
          -> (%17, %rv.13)
      return (%rv)


Take the instruction ``%rv.1 : Tensor = aten::zeros(%4, %6, %6, %10, %12) # test.py:9:10`` for
example.

* ``%rv.1 : Tensor`` means we assign the output to a (unique) value named ``rv.1``, that value is of ``Tensor`` type and that we do not know its concrete shape.
* ``aten::zeros`` is the operator (equivalent to ``torch.zeros``) and the input list ``(%4, %6, %6, %10, %12)`` specifies which values in scope should be passed as inputs. The schema for built-in functions like ``aten::zeros`` can be found at `Builtin Functions`_.
* ``# test.py:9:10`` is the location in the original source file that generated this instruction. In this case, it is a file named `test.py`, on line 9, and at character 10.

Notice that operators can also have associated ``blocks``, namely the
``prim::Loop`` and ``prim::If`` operators. In the graph print-out, these
operators are formatted to reflect their equivalent source code forms
to facilitate easy debugging.

Graphs can be inspected as shown to confirm that the computation described
by a :class:`ScriptModule` is correct, in both automated and manual fashion, as
described below.

Tracer
~~~~~~


Tracing Edge Cases
^^^^^^^^^^^^^^^^^^
There are some edge cases that exist where the trace of a given Python
function/module will not be representative of the underlying code. These
cases can include:

* Tracing of control flow that is dependent on inputs (e.g. tensor shapes)
* Tracing of in-place operations of tensor views (e.g. indexing on the left-hand side of an assignment)

Note that these cases may in fact be traceable in the future.


Automatic Trace Checking
^^^^^^^^^^^^^^^^^^^^^^^^
One way to automatically catch many errors in traces is by using ``check_inputs``
on the ``torch.jit.trace()`` API. ``check_inputs`` takes a list of tuples
of inputs that will be used to re-trace the computation and verify the
results. For example::

    def loop_in_traced_fn(x):
        result = x[0]
        for i in range(x.size(0)):
            result = result * x[i]
        return result

    inputs = (torch.rand(3, 4, 5),)
    check_inputs = [(torch.rand(4, 5, 6),), (torch.rand(2, 3, 4),)]

    traced = torch.jit.trace(loop_in_traced_fn, inputs, check_inputs=check_inputs)

Gives us the following diagnostic information::

    ERROR: Graphs differed across invocations!
    Graph diff:

                graph(%x : Tensor) {
                %1 : int = prim::Constant[value=0]()
                %2 : int = prim::Constant[value=0]()
                %result.1 : Tensor = aten::select(%x, %1, %2)
                %4 : int = prim::Constant[value=0]()
                %5 : int = prim::Constant[value=0]()
                %6 : Tensor = aten::select(%x, %4, %5)
                %result.2 : Tensor = aten::mul(%result.1, %6)
                %8 : int = prim::Constant[value=0]()
                %9 : int = prim::Constant[value=1]()
                %10 : Tensor = aten::select(%x, %8, %9)
            -   %result : Tensor = aten::mul(%result.2, %10)
            +   %result.3 : Tensor = aten::mul(%result.2, %10)
            ?          ++
                %12 : int = prim::Constant[value=0]()
                %13 : int = prim::Constant[value=2]()
                %14 : Tensor = aten::select(%x, %12, %13)
            +   %result : Tensor = aten::mul(%result.3, %14)
            +   %16 : int = prim::Constant[value=0]()
            +   %17 : int = prim::Constant[value=3]()
            +   %18 : Tensor = aten::select(%x, %16, %17)
            -   %15 : Tensor = aten::mul(%result, %14)
            ?     ^                                 ^
            +   %19 : Tensor = aten::mul(%result, %18)
            ?     ^                                 ^
            -   return (%15);
            ?             ^
            +   return (%19);
            ?             ^
                }


This message indicates to us that the computation differed between when
we first traced it and when we traced it with the ``check_inputs``. Indeed,
the loop within the body of ``loop_in_traced_fn`` depends on the shape
of the input ``x``, and thus when we try another ``x`` with a different
shape, the trace differs.

In this case, data-dependent control flow like this can be captured using
:func:`torch.jit.script` instead:

.. testcode::

    def fn(x):
        result = x[0]
        for i in range(x.size(0)):
            result = result * x[i]
        return result

    inputs = (torch.rand(3, 4, 5),)
    check_inputs = [(torch.rand(4, 5, 6),), (torch.rand(2, 3, 4),)]

    scripted_fn = torch.jit.script(fn)
    print(scripted_fn.graph)
    #print(str(scripted_fn.graph).strip())

    for input_tuple in [inputs] + check_inputs:
        torch.testing.assert_close(fn(*input_tuple), scripted_fn(*input_tuple))

.. testoutput::
    :hide:

    ...


Which produces::

    graph(%x : Tensor) {
        %5 : bool = prim::Constant[value=1]()
        %1 : int = prim::Constant[value=0]()
        %result.1 : Tensor = aten::select(%x, %1, %1)
        %4 : int = aten::size(%x, %1)
        %result : Tensor = prim::Loop(%4, %5, %result.1)
        block0(%i : int, %7 : Tensor) {
            %10 : Tensor = aten::select(%x, %1, %i)
            %result.2 : Tensor = aten::mul(%7, %10)
            -> (%5, %result.2)
        }
        return (%result);
    }

Tracer Warnings
^^^^^^^^^^^^^^^
The tracer produces warnings for several problematic patterns in traced
computation. As an example, take a trace of a function that contains an
in-place assignment on a slice (a view) of a Tensor:

.. testcode::

    def fill_row_zero(x):
        x[0] = torch.rand(*x.shape[1:2])
        return x

    traced = torch.jit.trace(fill_row_zero, (torch.rand(3, 4),))
    print(traced.graph)

.. testoutput::
    :hide:

    ...

Produces several warnings and a graph which simply returns the input::

    fill_row_zero.py:4: TracerWarning: There are 2 live references to the data region being modified when tracing in-place operator copy_ (possibly due to an assignment). This might cause the trace to be incorrect, because all other views that also reference this data will not reflect this change in the trace! On the other hand, if all other views use the same memory chunk, but are disjoint (e.g. are outputs of torch.split), this might still be safe.
        x[0] = torch.rand(*x.shape[1:2])
    fill_row_zero.py:6: TracerWarning: Output nr 1. of the traced function does not match the corresponding output of the Python function. Detailed error:
    Not within tolerance rtol=1e-05 atol=1e-05 at input[0, 1] (0.09115803241729736 vs. 0.6782537698745728) and 3 other locations (33.00%)
        traced = torch.jit.trace(fill_row_zero, (torch.rand(3, 4),))
    graph(%0 : Float(3, 4)) {
        return (%0);
    }

We can fix this by modifying the code to not use the in-place update, but
rather build up the result tensor out-of-place with ``torch.cat``:

.. testcode::

    def fill_row_zero(x):
        x = torch.cat((torch.rand(1, *x.shape[1:2]), x[1:2]), dim=0)
        return x

    traced = torch.jit.trace(fill_row_zero, (torch.rand(3, 4),))
    print(traced.graph)

.. testoutput::
    :hide:

    ...

Frequently Asked Questions
--------------------------

Q: I would like to train a model on GPU and do inference on CPU. What are the
best practices?

   First convert your model from GPU to CPU and then save it, like so: ::

      cpu_model = gpu_model.cpu()
      sample_input_cpu = sample_input_gpu.cpu()
      traced_cpu = torch.jit.trace(cpu_model, sample_input_cpu)
      torch.jit.save(traced_cpu, "cpu.pt")

      traced_gpu = torch.jit.trace(gpu_model, sample_input_gpu)
      torch.jit.save(traced_gpu, "gpu.pt")

      # ... later, when using the model:

      if use_gpu:
        model = torch.jit.load("gpu.pt")
      else:
        model = torch.jit.load("cpu.pt")

      model(input)

   This is recommended because the tracer may witness tensor creation on a
   specific device, so casting an already-loaded model may have unexpected
   effects. Casting the model *before* saving it ensures that the tracer has
   the correct device information.


Q: How do I store attributes on a :class:`ScriptModule`?

    Say we have a model like:

    .. testcode::

        import torch

        class Model(torch.nn.Module):
            def __init__(self):
                super(Model, self).__init__()
                self.x = 2

            def forward(self):
                return self.x

        m = torch.jit.script(Model())



    If ``Model`` is instantiated it will result in a compilation error
    since the compiler doesn't know about ``x``. There are 4 ways to inform the
    compiler of attributes on :class:`ScriptModule`:

    1. ``nn.Parameter`` - Values wrapped in ``nn.Parameter`` will work as they
    do on ``nn.Module``\s

    2. ``register_buffer`` - Values wrapped in ``register_buffer`` will work as
    they do on ``nn.Module``\s. This is equivalent to an attribute (see 4) of type
    ``Tensor``.

    3. Constants - Annotating a class member as ``Final`` (or adding it to a list called
    ``__constants__`` at the class definition level) will mark the contained names
    as constants. Constants are saved directly in the code of the model. See
    `builtin-constants` for details.

    4. Attributes - Values that are a `supported type` can be added as mutable
    attributes. Most types can be inferred but some may need to be specified, see
    `module attributes` for details.

Q: I would like to trace module's method but I keep getting this error:

``RuntimeError: Cannot insert a Tensor that requires grad as a constant. Consider making it a parameter or input, or detaching the gradient``

    This error usually means that the method you are tracing uses a module's parameters and
    you are passing the module's method instead of the module instance (e.g. ``my_module_instance.forward`` vs ``my_module_instance``).

      - Invoking ``trace`` with a module's method captures module parameters (which may require gradients) as **constants**.
      - On the other hand, invoking ``trace`` with module's instance (e.g. ``my_module``) creates a new module and correctly copies parameters into the new module, so they can accumulate gradients if required.

    To trace a specific method on a module, see :func:`torch.jit.trace_module <torch.jit.trace_module>`

Known Issues
---------------

If you're using ``Sequential`` with TorchScript, the inputs of some
of the ``Sequential`` submodules may be falsely inferred to be
``Tensor``, even if they're annotated otherwise. The canonical
solution is to subclass ``nn.Sequential`` and redeclare ``forward``
with the input typed correctly.

Appendix
--------

Migrating to PyTorch 1.2 Recursive Scripting API
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This section details the changes to TorchScript in PyTorch 1.2. If you are new to TorchScript you can
skip this section. There are two main changes to the TorchScript API with PyTorch 1.2.

1. :func:`torch.jit.script <torch.jit.script>` will now attempt to recursively compile functions,
methods, and classes that it encounters. Once you call ``torch.jit.script``,
compilation is "opt-out", rather than "opt-in".

2. ``torch.jit.script(nn_module_instance)`` is now the preferred way to create
:class:`ScriptModule`\s, instead of inheriting from ``torch.jit.ScriptModule``.
These changes combine to provide a simpler, easier-to-use API for converting
your ``nn.Module``\s into :class:`ScriptModule`\s, ready to be optimized and executed in a
non-Python environment.

The new usage looks like this:

.. testcode::

    import torch
    import torch.nn as nn
    import torch.nn.functional as F

    class Model(nn.Module):
        def __init__(self):
            super(Model, self).__init__()
            self.conv1 = nn.Conv2d(1, 20, 5)
            self.conv2 = nn.Conv2d(20, 20, 5)

        def forward(self, x):
            x = F.relu(self.conv1(x))
            return F.relu(self.conv2(x))

    my_model = Model()
    my_scripted_model = torch.jit.script(my_model)


* The module's ``forward`` is compiled by default. Methods called from ``forward`` are lazily compiled in the order they are used in ``forward``.
* To compile a method other than ``forward`` that is not called from ``forward``, add ``@torch.jit.export``.
* To stop the compiler from compiling a method, add :func:`@torch.jit.ignore <torch.jit.ignore>` or :func:`@torch.jit.unused <torch.jit.unused>`. ``@ignore`` leaves the
* method as a call to python, and ``@unused`` replaces it with an exception. ``@ignored`` cannot be exported; ``@unused`` can.
* Most attribute types can be inferred, so ``torch.jit.Attribute`` is not necessary. For empty container types, annotate their types using `PEP 526-style <https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations>`_ class annotations.
* Constants can be marked with a ``Final`` class annotation instead of adding the name of the member to ``__constants__``.
* Python 3 type hints can be used in place of ``torch.jit.annotate``

As a result of these changes, the following items are considered deprecated and should not appear in new code:
  * The ``@torch.jit.script_method`` decorator
  * Classes that inherit from ``torch.jit.ScriptModule``
  * The ``torch.jit.Attribute`` wrapper class
  * The ``__constants__`` array
  * The ``torch.jit.annotate`` function

Modules
^^^^^^^
.. warning::

    The :func:`@torch.jit.ignore <torch.jit.ignore>` annotation's behavior changes in
    PyTorch 1.2. Before PyTorch 1.2 the @ignore decorator was used to make a function
    or method callable from code that is exported. To get this functionality back,
    use ``@torch.jit.unused()``. ``@torch.jit.ignore`` is now equivalent
    to ``@torch.jit.ignore(drop=False)``. See :func:`@torch.jit.ignore <torch.jit.ignore>`
    and :func:`@torch.jit.unused<torch.jit.unused>` for details.

When passed to the :func:`torch.jit.script <torch.jit.script>` function, a ``torch.nn.Module``\'s data is
copied to a :class:`ScriptModule` and the TorchScript compiler compiles the module.
The module's ``forward`` is compiled by default. Methods called from ``forward`` are
lazily compiled in the order they are used in ``forward``, as well as any
``@torch.jit.export`` methods.

.. autofunction:: export

Functions
^^^^^^^^^
Functions don't change much, they can be decorated with :func:`@torch.jit.ignore <torch.jit.ignore>` or :func:`torch.jit.unused <torch.jit.unused>` if needed.

.. testcode::

    # Same behavior as pre-PyTorch 1.2
    @torch.jit.script
    def some_fn():
        return 2

    # Marks a function as ignored, if nothing
    # ever calls it then this has no effect
    @torch.jit.ignore
    def some_fn2():
        return 2

    # As with ignore, if nothing calls it then it has no effect.
    # If it is called in script it is replaced with an exception.
    @torch.jit.unused
    def some_fn3():
      import pdb; pdb.set_trace()
      return 4

    # Doesn't do anything, this function is already
    # the main entry point
    @torch.jit.export
    def some_fn4():
        return 2

TorchScript Classes
^^^^^^^^^^^^^^^^^^^

.. warning::

    TorchScript class support is experimental. Currently it is best suited
    for simple record-like types (think a ``NamedTuple`` with methods
    attached).

Everything in a user defined `TorchScript Class <torchscript-class>`_ is
exported by default, functions can be decorated with :func:`@torch.jit.ignore
<torch.jit.ignore>` if needed.

Attributes
^^^^^^^^^^
The TorchScript compiler needs to know the types of `module attributes`. Most types
can be inferred from the value of the member. Empty lists and dicts cannot have their
types inferred and must have their types annotated with `PEP 526-style <https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations>`_ class annotations.
If a type cannot be inferred and is not explicitly annotated, it will not be added as an attribute
to the resulting :class:`ScriptModule`


Old API:

.. testcode::

    from typing import Dict
    import torch

    class MyModule(torch.jit.ScriptModule):
        def __init__(self):
            super(MyModule, self).__init__()
            self.my_dict = torch.jit.Attribute({}, Dict[str, int])
            self.my_int = torch.jit.Attribute(20, int)

    m = MyModule()

New API:

.. testcode::

    from typing import Dict

    class MyModule(torch.nn.Module):
        my_dict: Dict[str, int]

        def __init__(self):
            super(MyModule, self).__init__()
            # This type cannot be inferred and must be specified
            self.my_dict = {}

            # The attribute type here is inferred to be `int`
            self.my_int = 20

        def forward(self):
            pass

    m = torch.jit.script(MyModule())


Constants
^^^^^^^^^
The ``Final`` type constructor can be used to mark members as `constant`. If members are not marked constant, they will be copied to the resulting :class:`ScriptModule` as an attribute. Using ``Final`` opens opportunities for optimization if the value is known to be fixed and gives additional type safety.

Old API:

.. testcode::

    class MyModule(torch.jit.ScriptModule):
        __constants__ = ['my_constant']

        def __init__(self):
            super(MyModule, self).__init__()
            self.my_constant = 2

        def forward(self):
            pass
    m = MyModule()

New API:

::

    try:
        from typing_extensions import Final
    except:
        # If you don't have `typing_extensions` installed, you can use a
        # polyfill from `torch.jit`.
        from torch.jit import Final

    class MyModule(torch.nn.Module):

        my_constant: Final[int]

        def __init__(self):
            super(MyModule, self).__init__()
            self.my_constant = 2

        def forward(self):
            pass

    m = torch.jit.script(MyModule())

.. _Python 3 type hints:

Variables
^^^^^^^^^
Containers are assumed to have type ``Tensor`` and be non-optional (see
`Default Types` for more information). Previously, ``torch.jit.annotate`` was used to
tell the TorchScript compiler what the type should be. Python 3 style type hints are
now supported.

.. testcode::

    import torch
    from typing import Dict, Optional

    @torch.jit.script
    def make_dict(flag: bool):
        x: Dict[str, int] = {}
        x['hi'] = 2
        b: Optional[int] = None
        if flag:
            b = 2
        return x, b

Fusion Backends
~~~~~~~~~~~~~~~
There are a couple of fusion backends available to optimize TorchScript execution. The default fuser on CPUs is NNC, which can perform fusions for both CPUs and GPUs. The default fuser on GPUs is NVFuser, which supports a wider range of operators and has demonstrated generated kernels with improved throughput. See the  `NVFuser documentation <https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/codegen/cuda/README.md>`_ for more details on usage and debugging.


References
~~~~~~~~~~
.. toctree::
    :maxdepth: 1

    jit_python_reference
    jit_unsupported

.. This package is missing doc. Adding it here for coverage
.. This does not add anything to the rendered page.
.. py:module:: torch.jit.mobile