File: nn.functional.rst

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (206 lines) | stat: -rw-r--r-- 3,265 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
.. role:: hidden
    :class: hidden-section

torch.nn.functional
===================

.. currentmodule:: torch.nn.functional

Convolution functions
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    conv1d
    conv2d
    conv3d
    conv_transpose1d
    conv_transpose2d
    conv_transpose3d
    unfold
    fold

Pooling functions
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    avg_pool1d
    avg_pool2d
    avg_pool3d
    max_pool1d
    max_pool2d
    max_pool3d
    max_unpool1d
    max_unpool2d
    max_unpool3d
    lp_pool1d
    lp_pool2d
    adaptive_max_pool1d
    adaptive_max_pool2d
    adaptive_max_pool3d
    adaptive_avg_pool1d
    adaptive_avg_pool2d
    adaptive_avg_pool3d
    fractional_max_pool2d
    fractional_max_pool3d

Non-linear activation functions
-------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    threshold
    threshold_
    relu
    relu_
    hardtanh
    hardtanh_
    hardswish
    relu6
    elu
    elu_
    selu
    celu
    leaky_relu
    leaky_relu_
    prelu
    rrelu
    rrelu_
    glu
    gelu
    logsigmoid
    hardshrink
    tanhshrink
    softsign
    softplus
    softmin
    softmax
    softshrink
    gumbel_softmax
    log_softmax
    tanh
    sigmoid
    hardsigmoid
    silu
    mish
    batch_norm
    group_norm
    instance_norm
    layer_norm
    local_response_norm
    normalize

.. _Link 1: https://arxiv.org/abs/1611.00712
.. _Link 2: https://arxiv.org/abs/1611.01144

Linear functions
----------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    linear
    bilinear

Dropout functions
-----------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    dropout
    alpha_dropout
    feature_alpha_dropout
    dropout1d
    dropout2d
    dropout3d

Sparse functions
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    embedding
    embedding_bag
    one_hot

Distance functions
----------------------------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    pairwise_distance
    cosine_similarity
    pdist


Loss functions
--------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    binary_cross_entropy
    binary_cross_entropy_with_logits
    poisson_nll_loss
    cosine_embedding_loss
    cross_entropy
    ctc_loss
    gaussian_nll_loss
    hinge_embedding_loss
    kl_div
    l1_loss
    mse_loss
    margin_ranking_loss
    multilabel_margin_loss
    multilabel_soft_margin_loss
    multi_margin_loss
    nll_loss
    huber_loss
    smooth_l1_loss
    soft_margin_loss
    triplet_margin_loss
    triplet_margin_with_distance_loss

Vision functions
----------------

.. autosummary::
    :toctree: generated
    :nosignatures:

    pixel_shuffle
    pixel_unshuffle
    pad
    interpolate
    upsample
    upsample_nearest
    upsample_bilinear
    grid_sample
    affine_grid

DataParallel functions (multi-GPU, distributed)
-----------------------------------------------

:hidden:`data_parallel`
~~~~~~~~~~~~~~~~~~~~~~~

.. autosummary::
    :toctree: generated
    :nosignatures:

    torch.nn.parallel.data_parallel