1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
.. role:: hidden
:class: hidden-section
torch.nn
===================================
.. automodule:: torch.nn
.. automodule:: torch.nn.modules
These are the basic building blocks for graphs:
.. contents:: torch.nn
:depth: 2
:local:
:backlinks: top
.. currentmodule:: torch.nn
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
~parameter.Parameter
~parameter.UninitializedParameter
~parameter.UninitializedBuffer
Containers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
Module
Sequential
ModuleList
ModuleDict
ParameterList
ParameterDict
Global Hooks For Module
.. currentmodule:: torch.nn.modules.module
.. autosummary::
:toctree: generated
:nosignatures:
register_module_forward_pre_hook
register_module_forward_hook
register_module_backward_hook
register_module_full_backward_hook
.. currentmodule:: torch
Convolution Layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Conv1d
nn.Conv2d
nn.Conv3d
nn.ConvTranspose1d
nn.ConvTranspose2d
nn.ConvTranspose3d
nn.LazyConv1d
nn.LazyConv2d
nn.LazyConv3d
nn.LazyConvTranspose1d
nn.LazyConvTranspose2d
nn.LazyConvTranspose3d
nn.Unfold
nn.Fold
Pooling layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.MaxPool1d
nn.MaxPool2d
nn.MaxPool3d
nn.MaxUnpool1d
nn.MaxUnpool2d
nn.MaxUnpool3d
nn.AvgPool1d
nn.AvgPool2d
nn.AvgPool3d
nn.FractionalMaxPool2d
nn.FractionalMaxPool3d
nn.LPPool1d
nn.LPPool2d
nn.AdaptiveMaxPool1d
nn.AdaptiveMaxPool2d
nn.AdaptiveMaxPool3d
nn.AdaptiveAvgPool1d
nn.AdaptiveAvgPool2d
nn.AdaptiveAvgPool3d
Padding Layers
--------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.ReflectionPad1d
nn.ReflectionPad2d
nn.ReflectionPad3d
nn.ReplicationPad1d
nn.ReplicationPad2d
nn.ReplicationPad3d
nn.ZeroPad2d
nn.ConstantPad1d
nn.ConstantPad2d
nn.ConstantPad3d
Non-linear Activations (weighted sum, nonlinearity)
---------------------------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.ELU
nn.Hardshrink
nn.Hardsigmoid
nn.Hardtanh
nn.Hardswish
nn.LeakyReLU
nn.LogSigmoid
nn.MultiheadAttention
nn.PReLU
nn.ReLU
nn.ReLU6
nn.RReLU
nn.SELU
nn.CELU
nn.GELU
nn.Sigmoid
nn.SiLU
nn.Mish
nn.Softplus
nn.Softshrink
nn.Softsign
nn.Tanh
nn.Tanhshrink
nn.Threshold
nn.GLU
Non-linear Activations (other)
------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Softmin
nn.Softmax
nn.Softmax2d
nn.LogSoftmax
nn.AdaptiveLogSoftmaxWithLoss
Normalization Layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.BatchNorm1d
nn.BatchNorm2d
nn.BatchNorm3d
nn.LazyBatchNorm1d
nn.LazyBatchNorm2d
nn.LazyBatchNorm3d
nn.GroupNorm
nn.SyncBatchNorm
nn.InstanceNorm1d
nn.InstanceNorm2d
nn.InstanceNorm3d
nn.LazyInstanceNorm1d
nn.LazyInstanceNorm2d
nn.LazyInstanceNorm3d
nn.LayerNorm
nn.LocalResponseNorm
Recurrent Layers
----------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.RNNBase
nn.RNN
nn.LSTM
nn.GRU
nn.RNNCell
nn.LSTMCell
nn.GRUCell
Transformer Layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Transformer
nn.TransformerEncoder
nn.TransformerDecoder
nn.TransformerEncoderLayer
nn.TransformerDecoderLayer
Linear Layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Identity
nn.Linear
nn.Bilinear
nn.LazyLinear
Dropout Layers
--------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Dropout
nn.Dropout1d
nn.Dropout2d
nn.Dropout3d
nn.AlphaDropout
nn.FeatureAlphaDropout
Sparse Layers
-------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Embedding
nn.EmbeddingBag
Distance Functions
------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.CosineSimilarity
nn.PairwiseDistance
Loss Functions
--------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.L1Loss
nn.MSELoss
nn.CrossEntropyLoss
nn.CTCLoss
nn.NLLLoss
nn.PoissonNLLLoss
nn.GaussianNLLLoss
nn.KLDivLoss
nn.BCELoss
nn.BCEWithLogitsLoss
nn.MarginRankingLoss
nn.HingeEmbeddingLoss
nn.MultiLabelMarginLoss
nn.HuberLoss
nn.SmoothL1Loss
nn.SoftMarginLoss
nn.MultiLabelSoftMarginLoss
nn.CosineEmbeddingLoss
nn.MultiMarginLoss
nn.TripletMarginLoss
nn.TripletMarginWithDistanceLoss
Vision Layers
----------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.PixelShuffle
nn.PixelUnshuffle
nn.Upsample
nn.UpsamplingNearest2d
nn.UpsamplingBilinear2d
Shuffle Layers
----------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.ChannelShuffle
DataParallel Layers (multi-GPU, distributed)
--------------------------------------------
.. automodule:: torch.nn.parallel
.. currentmodule:: torch
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.DataParallel
nn.parallel.DistributedDataParallel
Utilities
---------
.. automodule:: torch.nn.utils
From the ``torch.nn.utils`` module
.. currentmodule:: torch.nn.utils
.. autosummary::
:toctree: generated
:nosignatures:
clip_grad_norm_
clip_grad_value_
parameters_to_vector
vector_to_parameters
prune.BasePruningMethod
.. autosummary::
:toctree: generated
:nosignatures:
prune.PruningContainer
prune.Identity
prune.RandomUnstructured
prune.L1Unstructured
prune.RandomStructured
prune.LnStructured
prune.CustomFromMask
prune.identity
prune.random_unstructured
prune.l1_unstructured
prune.random_structured
prune.ln_structured
prune.global_unstructured
prune.custom_from_mask
prune.remove
prune.is_pruned
weight_norm
remove_weight_norm
spectral_norm
remove_spectral_norm
skip_init
Parametrizations implemented using the new parametrization functionality
in :func:`torch.nn.utils.parameterize.register_parametrization`.
.. autosummary::
:toctree: generated
:nosignatures:
parametrizations.orthogonal
parametrizations.spectral_norm
Utility functions to parametrize Tensors on existing Modules.
Note that these functions can be used to parametrize a given Parameter
or Buffer given a specific function that maps from an input space to the
parametrized space. They are not parameterizations that would transform
an object into a parameter. See the
`Parametrizations tutorial <https://pytorch.org/tutorials/intermediate/parametrizations.html>`_
for more information on how to implement your own parametrizations.
.. autosummary::
:toctree: generated
:nosignatures:
parametrize.register_parametrization
parametrize.remove_parametrizations
parametrize.cached
parametrize.is_parametrized
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
parametrize.ParametrizationList
Utility functions to calls a given Module in a stateless manner.
.. autosummary::
:toctree: generated
:nosignatures:
stateless.functional_call
Utility functions in other modules
.. currentmodule:: torch
.. autosummary::
:toctree: generated
:nosignatures:
nn.utils.rnn.PackedSequence
nn.utils.rnn.pack_padded_sequence
nn.utils.rnn.pad_packed_sequence
nn.utils.rnn.pad_sequence
nn.utils.rnn.pack_sequence
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Flatten
nn.Unflatten
Quantized Functions
--------------------
Quantization refers to techniques for performing computations and storing tensors at lower bitwidths than
floating point precision. PyTorch supports both per tensor and per channel asymmetric linear quantization. To learn more how to use quantized functions in PyTorch, please refer to the :ref:`quantization-doc` documentation.
Lazy Modules Initialization
---------------------------
.. currentmodule:: torch
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.modules.lazy.LazyModuleMixin
.. This module is kept only for backward compatibility
.. py:module:: torch.nn.backends
.. py:module:: torch.nn.utils.stateless
|