1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
|
Quantization API Reference
-------------------------------
torch.quantization
~~~~~~~~~~~~~~~~~~~~~
This module contains Eager mode quantization APIs.
.. currentmodule:: torch.quantization
Top level APIs
^^^^^^^^^^^^^^
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
quantize
quantize_dynamic
quantize_qat
prepare
prepare_qat
convert
Preparing model for quantization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
fuse_modules
QuantStub
DeQuantStub
QuantWrapper
add_quant_dequant
Utility functions
^^^^^^^^^^^^^^^^^
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
add_observer_
swap_module
propagate_qconfig_
default_eval_fn
get_observer_dict
torch.quantization.quantize_fx
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module contains FX graph mode quantization APIs (prototype).
.. currentmodule:: torch.quantization.quantize_fx
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
prepare_fx
prepare_qat_fx
convert_fx
fuse_fx
torch.ao.quantization.qconfig_mapping
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module contains QConfigMapping for configuring FX graph mode quantization.
.. currentmodule:: torch.ao.quantization.qconfig_mapping
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
QConfigMapping
get_default_qconfig_mapping
get_default_qat_qconfig_mapping
torch.ao.quantization.backend_config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module contains BackendConfig, a config object that defines how quantization is supported
in a backend. Currently only used by FX Graph Mode Quantization, but we may extend Eager Mode
Quantization to work with this as well.
.. currentmodule:: torch.ao.quantization.backend_config
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
BackendConfig
BackendPatternConfig
DTypeConfig
ObservationType
torch.ao.quantization.fx.custom_config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module contains a few CustomConfig classes that's used in both eager mode and FX graph mode quantization
.. currentmodule:: torch.ao.quantization.fx.custom_config
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
FuseCustomConfig
PrepareCustomConfig
ConvertCustomConfig
StandaloneModuleConfigEntry
torch (quantization related functions)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This describes the quantization related functions of the `torch` namespace.
.. currentmodule:: torch
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
quantize_per_tensor
quantize_per_channel
dequantize
torch.Tensor (quantization related methods)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Quantized Tensors support a limited subset of data manipulation methods of the
regular full-precision tensor.
.. currentmodule:: torch.Tensor
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
view
as_strided
expand
flatten
select
ne
eq
ge
le
gt
lt
copy_
clone
dequantize
equal
int_repr
max
mean
min
q_scale
q_zero_point
q_per_channel_scales
q_per_channel_zero_points
q_per_channel_axis
resize_
sort
topk
torch.quantization.observer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module contains observers which are used to collect statistics about
the values observed during calibration (PTQ) or training (QAT).
.. currentmodule:: torch.quantization.observer
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
ObserverBase
MinMaxObserver
MovingAverageMinMaxObserver
PerChannelMinMaxObserver
MovingAveragePerChannelMinMaxObserver
HistogramObserver
PlaceholderObserver
RecordingObserver
NoopObserver
get_observer_state_dict
load_observer_state_dict
default_observer
default_placeholder_observer
default_debug_observer
default_weight_observer
default_histogram_observer
default_per_channel_weight_observer
default_dynamic_quant_observer
default_float_qparams_observer
torch.quantization.fake_quantize
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module implements modules which are used to perform fake quantization
during QAT.
.. currentmodule:: torch.quantization.fake_quantize
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
FakeQuantizeBase
FakeQuantize
FixedQParamsFakeQuantize
FusedMovingAvgObsFakeQuantize
default_fake_quant
default_weight_fake_quant
default_per_channel_weight_fake_quant
default_histogram_fake_quant
default_fused_act_fake_quant
default_fused_wt_fake_quant
default_fused_per_channel_wt_fake_quant
disable_fake_quant
enable_fake_quant
disable_observer
enable_observer
torch.quantization.qconfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module defines `QConfig` objects which are used
to configure quantization settings for individual ops.
.. currentmodule:: torch.quantization.qconfig
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
QConfig
default_qconfig
default_debug_qconfig
default_per_channel_qconfig
default_dynamic_qconfig
float16_dynamic_qconfig
float16_static_qconfig
per_channel_dynamic_qconfig
float_qparams_weight_only_qconfig
default_qat_qconfig
default_weight_only_qconfig
default_activation_only_qconfig
default_qat_qconfig_v2
torch.ao.nn.intrinsic
~~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.ao.nn.intrinsic
.. automodule:: torch.ao.nn.intrinsic.modules
This module implements the combined (fused) modules conv + relu which can
then be quantized.
.. currentmodule:: torch.ao.nn.intrinsic
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
ConvReLU1d
ConvReLU2d
ConvReLU3d
LinearReLU
ConvBn1d
ConvBn2d
ConvBn3d
ConvBnReLU1d
ConvBnReLU2d
ConvBnReLU3d
BNReLU2d
BNReLU3d
torch.nn.intrinsic.qat
~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.nn.intrinsic.qat
.. automodule:: torch.nn.intrinsic.qat.modules
This module implements the versions of those fused operations needed for
quantization aware training.
.. currentmodule:: torch.nn.intrinsic.qat
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
LinearReLU
ConvBn1d
ConvBnReLU1d
ConvBn2d
ConvBnReLU2d
ConvReLU2d
ConvBn3d
ConvBnReLU3d
ConvReLU3d
update_bn_stats
freeze_bn_stats
torch.nn.intrinsic.quantized
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.nn.intrinsic.quantized
.. automodule:: torch.nn.intrinsic.quantized.modules
This module implements the quantized implementations of fused operations
like conv + relu. No BatchNorm variants as it's usually folded into convolution
for inference.
.. currentmodule:: torch.nn.intrinsic.quantized
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
BNReLU2d
BNReLU3d
ConvReLU1d
ConvReLU2d
ConvReLU3d
LinearReLU
torch.nn.intrinsic.quantized.dynamic
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.nn.intrinsic.quantized.dynamic
.. automodule:: torch.nn.intrinsic.quantized.dynamic.modules
This module implements the quantized dynamic implementations of fused operations
like linear + relu.
.. currentmodule:: torch.nn.intrinsic.quantized.dynamic
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
LinearReLU
torch.ao.nn.qat
~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.ao.nn.qat
.. automodule:: torch.ao.nn.qat.modules
This module implements versions of the key nn modules **Conv2d()** and
**Linear()** which run in FP32 but with rounding applied to simulate the
effect of INT8 quantization.
.. currentmodule:: torch.ao.nn.qat
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
Conv2d
Conv3d
Linear
torch.ao.nn.qat.dynamic
~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.ao.nn.qat.dynamic
.. automodule:: torch.ao.nn.qat.dynamic.modules
This module implements versions of the key nn modules such as **Linear()**
which run in FP32 but with rounding applied to simulate the effect of INT8
quantization and will be dynamically quantized during inference.
.. currentmodule:: torch.ao.nn.qat.dynamic
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
Linear
torch.ao.nn.quantized
~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.ao.nn.quantized
:noindex:
.. automodule:: torch.ao.nn.quantized.modules
This module implements the quantized versions of the nn layers such as
~`torch.nn.Conv2d` and `torch.nn.ReLU`.
.. currentmodule:: torch.ao.nn.quantized
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
ReLU6
Hardswish
ELU
LeakyReLU
Sigmoid
BatchNorm2d
BatchNorm3d
Conv1d
Conv2d
Conv3d
ConvTranspose1d
ConvTranspose2d
ConvTranspose3d
Embedding
EmbeddingBag
FloatFunctional
FXFloatFunctional
QFunctional
Linear
LayerNorm
GroupNorm
InstanceNorm1d
InstanceNorm2d
InstanceNorm3d
torch.ao.nn.quantized.functional
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.ao.nn.quantized.functional
This module implements the quantized versions of the functional layers such as
~`torch.nn.functional.conv2d` and `torch.nn.functional.relu`. Note:
:meth:`~torch.nn.functional.relu` supports quantized inputs.
.. currentmodule:: torch.ao.nn.quantized.functional
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
avg_pool2d
avg_pool3d
adaptive_avg_pool2d
adaptive_avg_pool3d
conv1d
conv2d
conv3d
interpolate
linear
max_pool1d
max_pool2d
celu
leaky_relu
hardtanh
hardswish
threshold
elu
hardsigmoid
clamp
upsample
upsample_bilinear
upsample_nearest
torch.nn.quantizable
~~~~~~~~~~~~~~~~~~~~
This module implements the quantizable versions of some of the nn layers.
These modules can be used in conjunction with the custom module mechanism,
by providing the ``custom_module_config`` argument to both prepare and convert.
.. currentmodule:: torch.nn.quantizable
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
LSTM
MultiheadAttention
torch.ao.nn.quantized.dynamic
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. automodule:: torch.ao.nn.quantized.dynamic
.. automodule:: torch.ao.nn.quantized.dynamic.modules
Dynamically quantized :class:`~torch.nn.Linear`, :class:`~torch.nn.LSTM`,
:class:`~torch.nn.LSTMCell`, :class:`~torch.nn.GRUCell`, and
:class:`~torch.nn.RNNCell`.
.. currentmodule:: torch.ao.nn.quantized.dynamic
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
Linear
LSTM
GRU
RNNCell
LSTMCell
GRUCell
Quantized dtypes and quantization schemes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that operator implementations currently only
support per channel quantization for weights of the **conv** and **linear**
operators. Furthermore, the input data is
mapped linearly to the the quantized data and vice versa
as follows:
.. math::
\begin{aligned}
\text{Quantization:}&\\
&Q_\text{out} = \text{clamp}(x_\text{input}/s+z, Q_\text{min}, Q_\text{max})\\
\text{Dequantization:}&\\
&x_\text{out} = (Q_\text{input}-z)*s
\end{aligned}
where :math:`\text{clamp}(.)` is the same as :func:`~torch.clamp` while the
scale :math:`s` and zero point :math:`z` are then computed
as described in :class:`~torch.ao.quantization.observer.MinMaxObserver`, specifically:
.. math::
\begin{aligned}
\text{if Symmetric:}&\\
&s = 2 \max(|x_\text{min}|, x_\text{max}) /
\left( Q_\text{max} - Q_\text{min} \right) \\
&z = \begin{cases}
0 & \text{if dtype is qint8} \\
128 & \text{otherwise}
\end{cases}\\
\text{Otherwise:}&\\
&s = \left( x_\text{max} - x_\text{min} \right ) /
\left( Q_\text{max} - Q_\text{min} \right ) \\
&z = Q_\text{min} - \text{round}(x_\text{min} / s)
\end{aligned}
where :math:`[x_\text{min}, x_\text{max}]` denotes the range of the input data while
:math:`Q_\text{min}` and :math:`Q_\text{max}` are respectively the minimum and maximum values of the quantized dtype.
Note that the choice of :math:`s` and :math:`z` implies that zero is represented with no quantization error whenever zero is within
the range of the input data or symmetric quantization is being used.
Additional data types and quantization schemes can be implemented through
the `custom operator mechanism <https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html>`_.
* :attr:`torch.qscheme` — Type to describe the quantization scheme of a tensor.
Supported types:
* :attr:`torch.per_tensor_affine` — per tensor, asymmetric
* :attr:`torch.per_channel_affine` — per channel, asymmetric
* :attr:`torch.per_tensor_symmetric` — per tensor, symmetric
* :attr:`torch.per_channel_symmetric` — per channel, symmetric
* ``torch.dtype`` — Type to describe the data. Supported types:
* :attr:`torch.quint8` — 8-bit unsigned integer
* :attr:`torch.qint8` — 8-bit signed integer
* :attr:`torch.qint32` — 32-bit signed integer
.. These modules are missing docs. Adding them here only for tracking
.. automodule:: torch.nn.intrinsic
.. automodule:: torch.nn.intrinsic.modules
.. automodule:: torch.nn.quantizable
.. automodule:: torch.nn.quantizable.modules
.. automodule:: torch.nn.quantized
:noindex:
.. automodule:: torch.ao.nn.quantized.reference
:noindex:
.. automodule:: torch.ao.nn.quantized.reference.modules
:noindex:
|