1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
.. currentmodule:: torch
.. _tensor-attributes-doc:
Tensor Attributes
=================
Each ``torch.Tensor`` has a :class:`torch.dtype`, :class:`torch.device`, and :class:`torch.layout`.
.. _dtype-doc:
torch.dtype
-----------
.. class:: dtype
A :class:`torch.dtype` is an object that represents the data type of a
:class:`torch.Tensor`. PyTorch has twelve different data types:
========================== =========================================== ===========================
Data type dtype Legacy Constructors
========================== =========================================== ===========================
32-bit floating point ``torch.float32`` or ``torch.float`` ``torch.*.FloatTensor``
64-bit floating point ``torch.float64`` or ``torch.double`` ``torch.*.DoubleTensor``
64-bit complex ``torch.complex64`` or ``torch.cfloat``
128-bit complex ``torch.complex128`` or ``torch.cdouble``
16-bit floating point [1]_ ``torch.float16`` or ``torch.half`` ``torch.*.HalfTensor``
16-bit floating point [2]_ ``torch.bfloat16`` ``torch.*.BFloat16Tensor``
8-bit integer (unsigned) ``torch.uint8`` ``torch.*.ByteTensor``
8-bit integer (signed) ``torch.int8`` ``torch.*.CharTensor``
16-bit integer (signed) ``torch.int16`` or ``torch.short`` ``torch.*.ShortTensor``
32-bit integer (signed) ``torch.int32`` or ``torch.int`` ``torch.*.IntTensor``
64-bit integer (signed) ``torch.int64`` or ``torch.long`` ``torch.*.LongTensor``
Boolean ``torch.bool`` ``torch.*.BoolTensor``
========================== =========================================== ===========================
.. [1] Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10
significand bits. Useful when precision is important.
.. [2] Sometimes referred to as Brain Floating Point: use 1 sign, 8 exponent and 7
significand bits. Useful when range is important, since it has the same
number of exponent bits as ``float32``
To find out if a :class:`torch.dtype` is a floating point data type, the property :attr:`is_floating_point`
can be used, which returns ``True`` if the data type is a floating point data type.
To find out if a :class:`torch.dtype` is a complex data type, the property :attr:`is_complex`
can be used, which returns ``True`` if the data type is a complex data type.
.. _type-promotion-doc:
When the dtypes of inputs to an arithmetic operation (`add`, `sub`, `div`, `mul`) differ, we promote
by finding the minimum dtype that satisfies the following rules:
* If the type of a scalar operand is of a higher category than tensor operands
(where complex > floating > integral > boolean), we promote to a type with sufficient size to hold
all scalar operands of that category.
* If a zero-dimension tensor operand has a higher category than dimensioned operands,
we promote to a type with sufficient size and category to hold all zero-dim tensor operands of
that category.
* If there are no higher-category zero-dim operands, we promote to a type with sufficient size
and category to hold all dimensioned operands.
A floating point scalar operand has dtype `torch.get_default_dtype()` and an integral
non-boolean scalar operand has dtype `torch.int64`. Unlike numpy, we do not inspect
values when determining the minimum `dtypes` of an operand. Quantized and complex types
are not yet supported.
Promotion Examples::
>>> float_tensor = torch.ones(1, dtype=torch.float)
>>> double_tensor = torch.ones(1, dtype=torch.double)
>>> complex_float_tensor = torch.ones(1, dtype=torch.complex64)
>>> complex_double_tensor = torch.ones(1, dtype=torch.complex128)
>>> int_tensor = torch.ones(1, dtype=torch.int)
>>> long_tensor = torch.ones(1, dtype=torch.long)
>>> uint_tensor = torch.ones(1, dtype=torch.uint8)
>>> double_tensor = torch.ones(1, dtype=torch.double)
>>> bool_tensor = torch.ones(1, dtype=torch.bool)
# zero-dim tensors
>>> long_zerodim = torch.tensor(1, dtype=torch.long)
>>> int_zerodim = torch.tensor(1, dtype=torch.int)
>>> torch.add(5, 5).dtype
torch.int64
# 5 is an int64, but does not have higher category than int_tensor so is not considered.
>>> (int_tensor + 5).dtype
torch.int32
>>> (int_tensor + long_zerodim).dtype
torch.int32
>>> (long_tensor + int_tensor).dtype
torch.int64
>>> (bool_tensor + long_tensor).dtype
torch.int64
>>> (bool_tensor + uint_tensor).dtype
torch.uint8
>>> (float_tensor + double_tensor).dtype
torch.float64
>>> (complex_float_tensor + complex_double_tensor).dtype
torch.complex128
>>> (bool_tensor + int_tensor).dtype
torch.int32
# Since long is a different kind than float, result dtype only needs to be large enough
# to hold the float.
>>> torch.add(long_tensor, float_tensor).dtype
torch.float32
When the output tensor of an arithmetic operation is specified, we allow casting to its `dtype` except that:
* An integral output tensor cannot accept a floating point tensor.
* A boolean output tensor cannot accept a non-boolean tensor.
* A non-complex output tensor cannot accept a complex tensor
Casting Examples::
# allowed:
>>> float_tensor *= float_tensor
>>> float_tensor *= int_tensor
>>> float_tensor *= uint_tensor
>>> float_tensor *= bool_tensor
>>> float_tensor *= double_tensor
>>> int_tensor *= long_tensor
>>> int_tensor *= uint_tensor
>>> uint_tensor *= int_tensor
# disallowed (RuntimeError: result type can't be cast to the desired output type):
>>> int_tensor *= float_tensor
>>> bool_tensor *= int_tensor
>>> bool_tensor *= uint_tensor
>>> float_tensor *= complex_float_tensor
.. _device-doc:
torch.device
------------
.. class:: device
A :class:`torch.device` is an object representing the device on which a :class:`torch.Tensor` is
or will be allocated.
The :class:`torch.device` contains a device type (``'cpu'`` or ``'cuda'``) and optional device
ordinal for the device type. If the device ordinal is not present, this object will always represent
the current device for the device type, even after :func:`torch.cuda.set_device()` is called; e.g.,
a :class:`torch.Tensor` constructed with device ``'cuda'`` is equivalent to ``'cuda:X'`` where X is
the result of :func:`torch.cuda.current_device()`.
A :class:`torch.Tensor`'s device can be accessed via the :attr:`Tensor.device` property.
A :class:`torch.device` can be constructed via a string or via a string and device ordinal
Via a string:
::
>>> torch.device('cuda:0')
device(type='cuda', index=0)
>>> torch.device('cpu')
device(type='cpu')
>>> torch.device('cuda') # current cuda device
device(type='cuda')
Via a string and device ordinal:
::
>>> torch.device('cuda', 0)
device(type='cuda', index=0)
>>> torch.device('cpu', 0)
device(type='cpu', index=0)
.. note::
The :class:`torch.device` argument in functions can generally be substituted with a string.
This allows for fast prototyping of code.
>>> # Example of a function that takes in a torch.device
>>> cuda1 = torch.device('cuda:1')
>>> torch.randn((2,3), device=cuda1)
>>> # You can substitute the torch.device with a string
>>> torch.randn((2,3), device='cuda:1')
.. note::
For legacy reasons, a device can be constructed via a single device ordinal, which is treated
as a cuda device. This matches :meth:`Tensor.get_device`, which returns an ordinal for cuda
tensors and is not supported for cpu tensors.
>>> torch.device(1)
device(type='cuda', index=1)
.. note::
Methods which take a device will generally accept a (properly formatted) string
or (legacy) integer device ordinal, i.e. the following are all equivalent:
>>> torch.randn((2,3), device=torch.device('cuda:1'))
>>> torch.randn((2,3), device='cuda:1')
>>> torch.randn((2,3), device=1) # legacy
.. _layout-doc:
torch.layout
------------
.. class:: layout
.. warning::
The ``torch.layout`` class is in beta and subject to change.
A :class:`torch.layout` is an object that represents the memory layout of a
:class:`torch.Tensor`. Currently, we support ``torch.strided`` (dense Tensors)
and have beta support for ``torch.sparse_coo`` (sparse COO Tensors).
``torch.strided`` represents dense Tensors and is the memory layout that
is most commonly used. Each strided tensor has an associated
:class:`torch.Storage`, which holds its data. These tensors provide
multi-dimensional, `strided <https://en.wikipedia.org/wiki/Stride_of_an_array>`_
view of a storage. Strides are a list of integers: the k-th stride
represents the jump in the memory necessary to go from one element to the
next one in the k-th dimension of the Tensor. This concept makes it possible
to perform many tensor operations efficiently.
Example::
>>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
>>> x.stride()
(5, 1)
>>> x.t().stride()
(1, 5)
For more information on ``torch.sparse_coo`` tensors, see :ref:`sparse-docs`.
torch.memory_format
-------------------
.. class:: memory_format
A :class:`torch.memory_format` is an object representing the memory format on which a :class:`torch.Tensor` is
or will be allocated.
Possible values are:
- ``torch.contiguous_format``:
Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in decreasing order.
- ``torch.channels_last``:
Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in
``strides[0] > strides[2] > strides[3] > strides[1] == 1`` aka NHWC order.
- ``torch.channels_last_3d``:
Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in
``strides[0] > strides[2] > strides[3] > strides[4] > strides[1] == 1`` aka NDHWC order.
- ``torch.preserve_format``:
Used in functions like `clone` to preserve the memory format of the input tensor. If input tensor is
allocated in dense non-overlapping memory, the output tensor strides will be copied from the input.
Otherwise output strides will follow ``torch.contiguous_format``
|