File: tensor_attributes.rst

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (260 lines) | stat: -rw-r--r-- 10,420 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
.. currentmodule:: torch

.. _tensor-attributes-doc:

Tensor Attributes
=================

Each ``torch.Tensor`` has a :class:`torch.dtype`, :class:`torch.device`, and :class:`torch.layout`.

.. _dtype-doc:

torch.dtype
-----------

.. class:: dtype

A :class:`torch.dtype` is an object that represents the data type of a
:class:`torch.Tensor`. PyTorch has twelve different data types:

========================== ===========================================   ===========================
Data type                  dtype                                         Legacy Constructors
========================== ===========================================   ===========================
32-bit floating point      ``torch.float32`` or ``torch.float``          ``torch.*.FloatTensor``
64-bit floating point      ``torch.float64`` or ``torch.double``         ``torch.*.DoubleTensor``
64-bit complex             ``torch.complex64`` or ``torch.cfloat``
128-bit complex            ``torch.complex128`` or ``torch.cdouble``
16-bit floating point [1]_ ``torch.float16`` or ``torch.half``           ``torch.*.HalfTensor``
16-bit floating point [2]_ ``torch.bfloat16``                            ``torch.*.BFloat16Tensor``
8-bit integer (unsigned)   ``torch.uint8``                               ``torch.*.ByteTensor``
8-bit integer (signed)     ``torch.int8``                                ``torch.*.CharTensor``
16-bit integer (signed)    ``torch.int16`` or ``torch.short``            ``torch.*.ShortTensor``
32-bit integer (signed)    ``torch.int32`` or ``torch.int``              ``torch.*.IntTensor``
64-bit integer (signed)    ``torch.int64`` or ``torch.long``             ``torch.*.LongTensor``
Boolean                    ``torch.bool``                                ``torch.*.BoolTensor``
========================== ===========================================   ===========================

.. [1] Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10
  significand bits. Useful when precision is important.

.. [2] Sometimes referred to as Brain Floating Point: use 1 sign, 8 exponent and 7
  significand bits. Useful when range is important, since it has the same
  number of exponent bits as ``float32``

To find out if a :class:`torch.dtype` is a floating point data type, the property :attr:`is_floating_point`
can be used, which returns ``True`` if the data type is a floating point data type.

To find out if a :class:`torch.dtype` is a complex data type, the property :attr:`is_complex`
can be used, which returns ``True`` if the data type is a complex data type.

.. _type-promotion-doc:

When the dtypes of inputs to an arithmetic operation (`add`, `sub`, `div`, `mul`) differ, we promote
by finding the minimum dtype that satisfies the following rules:

* If the type of a scalar operand is of a higher category than tensor operands
  (where complex > floating > integral > boolean), we promote to a type with sufficient size to hold
  all scalar operands of that category.
* If a zero-dimension tensor operand has a higher category than dimensioned operands,
  we promote to a type with sufficient size and category to hold all zero-dim tensor operands of
  that category.
* If there are no higher-category zero-dim operands, we promote to a type with sufficient size
  and category to hold all dimensioned operands.

A floating point scalar operand has dtype `torch.get_default_dtype()` and an integral
non-boolean scalar operand has dtype `torch.int64`. Unlike numpy, we do not inspect
values when determining the minimum `dtypes` of an operand.  Quantized and complex types
are not yet supported.

Promotion Examples::

    >>> float_tensor = torch.ones(1, dtype=torch.float)
    >>> double_tensor = torch.ones(1, dtype=torch.double)
    >>> complex_float_tensor = torch.ones(1, dtype=torch.complex64)
    >>> complex_double_tensor = torch.ones(1, dtype=torch.complex128)
    >>> int_tensor = torch.ones(1, dtype=torch.int)
    >>> long_tensor = torch.ones(1, dtype=torch.long)
    >>> uint_tensor = torch.ones(1, dtype=torch.uint8)
    >>> double_tensor = torch.ones(1, dtype=torch.double)
    >>> bool_tensor = torch.ones(1, dtype=torch.bool)
    # zero-dim tensors
    >>> long_zerodim = torch.tensor(1, dtype=torch.long)
    >>> int_zerodim = torch.tensor(1, dtype=torch.int)

    >>> torch.add(5, 5).dtype
    torch.int64
    # 5 is an int64, but does not have higher category than int_tensor so is not considered.
    >>> (int_tensor + 5).dtype
    torch.int32
    >>> (int_tensor + long_zerodim).dtype
    torch.int32
    >>> (long_tensor + int_tensor).dtype
    torch.int64
    >>> (bool_tensor + long_tensor).dtype
    torch.int64
    >>> (bool_tensor + uint_tensor).dtype
    torch.uint8
    >>> (float_tensor + double_tensor).dtype
    torch.float64
    >>> (complex_float_tensor + complex_double_tensor).dtype
    torch.complex128
    >>> (bool_tensor + int_tensor).dtype
    torch.int32
    # Since long is a different kind than float, result dtype only needs to be large enough
    # to hold the float.
    >>> torch.add(long_tensor, float_tensor).dtype
    torch.float32

When the output tensor of an arithmetic operation is specified, we allow casting to its `dtype` except that:
  * An integral output tensor cannot accept a floating point tensor.
  * A boolean output tensor cannot accept a non-boolean tensor.
  * A non-complex output tensor cannot accept a complex tensor

Casting Examples::

    # allowed:
    >>> float_tensor *= float_tensor
    >>> float_tensor *= int_tensor
    >>> float_tensor *= uint_tensor
    >>> float_tensor *= bool_tensor
    >>> float_tensor *= double_tensor
    >>> int_tensor *= long_tensor
    >>> int_tensor *= uint_tensor
    >>> uint_tensor *= int_tensor

    # disallowed (RuntimeError: result type can't be cast to the desired output type):
    >>> int_tensor *= float_tensor
    >>> bool_tensor *= int_tensor
    >>> bool_tensor *= uint_tensor
    >>> float_tensor *= complex_float_tensor


.. _device-doc:

torch.device
------------

.. class:: device

A :class:`torch.device` is an object representing the device on which a :class:`torch.Tensor` is
or will be allocated.

The :class:`torch.device` contains a device type (``'cpu'`` or ``'cuda'``) and optional device
ordinal for the device type. If the device ordinal is not present, this object will always represent
the current device for the device type, even after :func:`torch.cuda.set_device()` is called; e.g.,
a :class:`torch.Tensor` constructed with device ``'cuda'`` is equivalent to ``'cuda:X'`` where X is
the result of :func:`torch.cuda.current_device()`.

A :class:`torch.Tensor`'s device can be accessed via the :attr:`Tensor.device` property.

A :class:`torch.device` can be constructed via a string or via a string and device ordinal

Via a string:
::

    >>> torch.device('cuda:0')
    device(type='cuda', index=0)

    >>> torch.device('cpu')
    device(type='cpu')

    >>> torch.device('cuda')  # current cuda device
    device(type='cuda')

Via a string and device ordinal:

::

    >>> torch.device('cuda', 0)
    device(type='cuda', index=0)

    >>> torch.device('cpu', 0)
    device(type='cpu', index=0)

.. note::
   The :class:`torch.device` argument in functions can generally be substituted with a string.
   This allows for fast prototyping of code.

   >>> # Example of a function that takes in a torch.device
   >>> cuda1 = torch.device('cuda:1')
   >>> torch.randn((2,3), device=cuda1)

   >>> # You can substitute the torch.device with a string
   >>> torch.randn((2,3), device='cuda:1')

.. note::
   For legacy reasons, a device can be constructed via a single device ordinal, which is treated
   as a cuda device.  This matches :meth:`Tensor.get_device`, which returns an ordinal for cuda
   tensors and is not supported for cpu tensors.

   >>> torch.device(1)
   device(type='cuda', index=1)

.. note::
   Methods which take a device will generally accept a (properly formatted) string
   or (legacy) integer device ordinal, i.e. the following are all equivalent:

   >>> torch.randn((2,3), device=torch.device('cuda:1'))
   >>> torch.randn((2,3), device='cuda:1')
   >>> torch.randn((2,3), device=1)  # legacy


.. _layout-doc:

torch.layout
------------

.. class:: layout

.. warning::
  The ``torch.layout`` class is in beta and subject to change.

A :class:`torch.layout` is an object that represents the memory layout of a
:class:`torch.Tensor`. Currently, we support ``torch.strided`` (dense Tensors)
and have beta support for ``torch.sparse_coo`` (sparse COO Tensors).

``torch.strided`` represents dense Tensors and is the memory layout that
is most commonly used. Each strided tensor has an associated
:class:`torch.Storage`, which holds its data. These tensors provide
multi-dimensional, `strided <https://en.wikipedia.org/wiki/Stride_of_an_array>`_
view of a storage. Strides are a list of integers: the k-th stride
represents the jump in the memory necessary to go from one element to the
next one in the k-th dimension of the Tensor. This concept makes it possible
to perform many tensor operations efficiently.

Example::

    >>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
    >>> x.stride()
    (5, 1)

    >>> x.t().stride()
    (1, 5)

For more information on ``torch.sparse_coo`` tensors, see :ref:`sparse-docs`.

torch.memory_format
-------------------

.. class:: memory_format

A :class:`torch.memory_format` is an object representing the memory format on which a :class:`torch.Tensor` is
or will be allocated.

Possible values are:

- ``torch.contiguous_format``:
  Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in decreasing order.

- ``torch.channels_last``:
  Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in
  ``strides[0] > strides[2] > strides[3] > strides[1] == 1`` aka NHWC order.

- ``torch.channels_last_3d``:
  Tensor is or will be allocated in dense non-overlapping memory. Strides represented by values in
  ``strides[0] > strides[2] > strides[3] > strides[4] > strides[1] == 1`` aka NDHWC order.

- ``torch.preserve_format``:
  Used in functions like `clone` to preserve the memory format of the input tensor. If input tensor is
  allocated in dense non-overlapping memory, the output tensor strides will be copied from the input.
  Otherwise output strides will follow ``torch.contiguous_format``