File: torch.rst

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (631 lines) | stat: -rw-r--r-- 10,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
torch
=====
.. automodule:: torch
.. currentmodule:: torch

Tensors
-------
.. autosummary::
    :toctree: generated
    :nosignatures:

    is_tensor
    is_storage
    is_complex
    is_conj
    is_floating_point
    is_nonzero
    set_default_dtype
    get_default_dtype
    set_default_tensor_type
    numel
    set_printoptions
    set_flush_denormal

.. _tensor-creation-ops:

Creation Ops
~~~~~~~~~~~~

.. note::
    Random sampling creation ops are listed under :ref:`random-sampling` and
    include:
    :func:`torch.rand`
    :func:`torch.rand_like`
    :func:`torch.randn`
    :func:`torch.randn_like`
    :func:`torch.randint`
    :func:`torch.randint_like`
    :func:`torch.randperm`
    You may also use :func:`torch.empty` with the :ref:`inplace-random-sampling`
    methods to create :class:`torch.Tensor` s with values sampled from a broader
    range of distributions.

.. autosummary::
    :toctree: generated
    :nosignatures:

    tensor
    sparse_coo_tensor
    asarray
    as_tensor
    as_strided
    from_numpy
    from_dlpack
    frombuffer
    zeros
    zeros_like
    ones
    ones_like
    arange
    range
    linspace
    logspace
    eye
    empty
    empty_like
    empty_strided
    full
    full_like
    quantize_per_tensor
    quantize_per_channel
    dequantize
    complex
    polar
    heaviside

.. _indexing-slicing-joining:

Indexing, Slicing, Joining, Mutating Ops
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
    :toctree: generated
    :nosignatures:

    adjoint
    argwhere
    cat
    concat
    concatenate
    conj
    chunk
    dsplit
    column_stack
    dstack
    gather
    hsplit
    hstack
    index_add
    index_copy
    index_reduce
    index_select
    masked_select
    movedim
    moveaxis
    narrow
    nonzero
    permute
    reshape
    row_stack
    select
    scatter
    diagonal_scatter
    select_scatter
    slice_scatter
    scatter_add
    scatter_reduce
    split
    squeeze
    stack
    swapaxes
    swapdims
    t
    take
    take_along_dim
    tensor_split
    tile
    transpose
    unbind
    unsqueeze
    vsplit
    vstack
    where

.. _generators:

Generators
----------------------------------
.. autosummary::
    :toctree: generated
    :nosignatures:

    Generator

.. _random-sampling:

Random sampling
----------------------------------
.. autosummary::
    :toctree: generated
    :nosignatures:

    seed
    manual_seed
    initial_seed
    get_rng_state
    set_rng_state

.. autoattribute:: torch.default_generator
   :annotation:  Returns the default CPU torch.Generator

.. The following doesn't actually seem to exist.
   https://github.com/pytorch/pytorch/issues/27780
   .. autoattribute:: torch.cuda.default_generators
      :annotation:  If cuda is available, returns a tuple of default CUDA torch.Generator-s.
                    The number of CUDA torch.Generator-s returned is equal to the number of
                    GPUs available in the system.
.. autosummary::
    :toctree: generated
    :nosignatures:

    bernoulli
    multinomial
    normal
    poisson
    rand
    rand_like
    randint
    randint_like
    randn
    randn_like
    randperm

.. _inplace-random-sampling:

In-place random sampling
~~~~~~~~~~~~~~~~~~~~~~~~

There are a few more in-place random sampling functions defined on Tensors as well. Click through to refer to their documentation:

- :func:`torch.Tensor.bernoulli_` - in-place version of :func:`torch.bernoulli`
- :func:`torch.Tensor.cauchy_` - numbers drawn from the Cauchy distribution
- :func:`torch.Tensor.exponential_` - numbers drawn from the exponential distribution
- :func:`torch.Tensor.geometric_` - elements drawn from the geometric distribution
- :func:`torch.Tensor.log_normal_` - samples from the log-normal distribution
- :func:`torch.Tensor.normal_` - in-place version of :func:`torch.normal`
- :func:`torch.Tensor.random_` - numbers sampled from the discrete uniform distribution
- :func:`torch.Tensor.uniform_` - numbers sampled from the continuous uniform distribution

Quasi-random sampling
~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
    :toctree: generated
    :nosignatures:
    :template: sobolengine.rst

    quasirandom.SobolEngine

Serialization
----------------------------------
.. autosummary::
    :toctree: generated
    :nosignatures:

    save
    load

Parallelism
----------------------------------
.. autosummary::
    :toctree: generated
    :nosignatures:

    get_num_threads
    set_num_threads
    get_num_interop_threads
    set_num_interop_threads

.. _torch-rst-local-disable-grad:

Locally disabling gradient computation
--------------------------------------
The context managers :func:`torch.no_grad`, :func:`torch.enable_grad`, and
:func:`torch.set_grad_enabled` are helpful for locally disabling and enabling
gradient computation. See :ref:`locally-disable-grad` for more details on
their usage.  These context managers are thread local, so they won't
work if you send work to another thread using the ``threading`` module, etc.

Examples::

  >>> x = torch.zeros(1, requires_grad=True)
  >>> with torch.no_grad():
  ...     y = x * 2
  >>> y.requires_grad
  False

  >>> is_train = False
  >>> with torch.set_grad_enabled(is_train):
  ...     y = x * 2
  >>> y.requires_grad
  False

  >>> torch.set_grad_enabled(True)  # this can also be used as a function
  >>> y = x * 2
  >>> y.requires_grad
  True

  >>> torch.set_grad_enabled(False)
  >>> y = x * 2
  >>> y.requires_grad
  False

.. autosummary::
    :toctree: generated
    :nosignatures:

    no_grad
    enable_grad
    set_grad_enabled
    is_grad_enabled
    inference_mode
    is_inference_mode_enabled

Math operations
---------------

Pointwise Ops
~~~~~~~~~~~~~~~~~~~~~~

.. autosummary::
    :toctree: generated
    :nosignatures:

    abs
    absolute
    acos
    arccos
    acosh
    arccosh
    add
    addcdiv
    addcmul
    angle
    asin
    arcsin
    asinh
    arcsinh
    atan
    arctan
    atanh
    arctanh
    atan2
    arctan2
    bitwise_not
    bitwise_and
    bitwise_or
    bitwise_xor
    bitwise_left_shift
    bitwise_right_shift
    ceil
    clamp
    clip
    conj_physical
    copysign
    cos
    cosh
    deg2rad
    div
    divide
    digamma
    erf
    erfc
    erfinv
    exp
    exp2
    expm1
    fake_quantize_per_channel_affine
    fake_quantize_per_tensor_affine
    fix
    float_power
    floor
    floor_divide
    fmod
    frac
    frexp
    gradient
    imag
    ldexp
    lerp
    lgamma
    log
    log10
    log1p
    log2
    logaddexp
    logaddexp2
    logical_and
    logical_not
    logical_or
    logical_xor
    logit
    hypot
    i0
    igamma
    igammac
    mul
    multiply
    mvlgamma
    nan_to_num
    neg
    negative
    nextafter
    polygamma
    positive
    pow
    quantized_batch_norm
    quantized_max_pool1d
    quantized_max_pool2d
    rad2deg
    real
    reciprocal
    remainder
    round
    rsqrt
    sigmoid
    sign
    sgn
    signbit
    sin
    sinc
    sinh
    sqrt
    square
    sub
    subtract
    tan
    tanh
    true_divide
    trunc
    xlogy

Reduction Ops
~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
    :toctree: generated
    :nosignatures:

    argmax
    argmin
    amax
    amin
    aminmax
    all
    any
    max
    min
    dist
    logsumexp
    mean
    nanmean
    median
    nanmedian
    mode
    norm
    nansum
    prod
    quantile
    nanquantile
    std
    std_mean
    sum
    unique
    unique_consecutive
    var
    var_mean
    count_nonzero

Comparison Ops
~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
    :toctree: generated
    :nosignatures:

    allclose
    argsort
    eq
    equal
    ge
    greater_equal
    gt
    greater
    isclose
    isfinite
    isin
    isinf
    isposinf
    isneginf
    isnan
    isreal
    kthvalue
    le
    less_equal
    lt
    less
    maximum
    minimum
    fmax
    fmin
    ne
    not_equal
    sort
    topk
    msort


Spectral Ops
~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
    :toctree: generated
    :nosignatures:

    stft
    istft
    bartlett_window
    blackman_window
    hamming_window
    hann_window
    kaiser_window


Other Operations
~~~~~~~~~~~~~~~~~~~~~~

.. autosummary::
    :toctree: generated
    :nosignatures:

    atleast_1d
    atleast_2d
    atleast_3d
    bincount
    block_diag
    broadcast_tensors
    broadcast_to
    broadcast_shapes
    bucketize
    cartesian_prod
    cdist
    clone
    combinations
    corrcoef
    cov
    cross
    cummax
    cummin
    cumprod
    cumsum
    diag
    diag_embed
    diagflat
    diagonal
    diff
    einsum
    flatten
    flip
    fliplr
    flipud
    kron
    rot90
    gcd
    histc
    histogram
    histogramdd
    meshgrid
    lcm
    logcumsumexp
    ravel
    renorm
    repeat_interleave
    roll
    searchsorted
    tensordot
    trace
    tril
    tril_indices
    triu
    triu_indices
    unflatten
    vander
    view_as_real
    view_as_complex
    resolve_conj
    resolve_neg


BLAS and LAPACK Operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
    :toctree: generated
    :nosignatures:

    addbmm
    addmm
    addmv
    addr
    baddbmm
    bmm
    chain_matmul
    cholesky
    cholesky_inverse
    cholesky_solve
    dot
    geqrf
    ger
    inner
    inverse
    det
    logdet
    slogdet
    lu
    lu_solve
    lu_unpack
    matmul
    matrix_power
    matrix_exp
    mm
    mv
    orgqr
    ormqr
    outer
    pinverse
    qr
    svd
    svd_lowrank
    pca_lowrank
    symeig
    lobpcg
    trapz
    trapezoid
    cumulative_trapezoid
    triangular_solve
    vdot

Utilities
----------------------------------
.. autosummary::
    :toctree: generated
    :nosignatures:

    compiled_with_cxx11_abi
    result_type
    can_cast
    promote_types
    use_deterministic_algorithms
    are_deterministic_algorithms_enabled
    is_deterministic_algorithms_warn_only_enabled
    set_deterministic_debug_mode
    get_deterministic_debug_mode
    set_float32_matmul_precision
    get_float32_matmul_precision
    set_warn_always
    is_warn_always_enabled
    _assert

Operator Tags
------------------------------------
.. autoclass:: Tag
    :members:

.. Empty submodules added only for tracking.
.. py:module:: torch.contrib
.. py:module:: torch.utils.backcompat

.. This submodule is split manually without a top level page.
.. py:module:: torch.utils

.. This module is only used internally for ROCm builds.
.. py:module:: torch.utils.hipify

.. This module needs to be documented. Adding here in the meantime
.. for tracking purposes
.. py:module:: torch.utils.model_dump