1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
torch
=====
.. automodule:: torch
.. currentmodule:: torch
Tensors
-------
.. autosummary::
:toctree: generated
:nosignatures:
is_tensor
is_storage
is_complex
is_conj
is_floating_point
is_nonzero
set_default_dtype
get_default_dtype
set_default_tensor_type
numel
set_printoptions
set_flush_denormal
.. _tensor-creation-ops:
Creation Ops
~~~~~~~~~~~~
.. note::
Random sampling creation ops are listed under :ref:`random-sampling` and
include:
:func:`torch.rand`
:func:`torch.rand_like`
:func:`torch.randn`
:func:`torch.randn_like`
:func:`torch.randint`
:func:`torch.randint_like`
:func:`torch.randperm`
You may also use :func:`torch.empty` with the :ref:`inplace-random-sampling`
methods to create :class:`torch.Tensor` s with values sampled from a broader
range of distributions.
.. autosummary::
:toctree: generated
:nosignatures:
tensor
sparse_coo_tensor
asarray
as_tensor
as_strided
from_numpy
from_dlpack
frombuffer
zeros
zeros_like
ones
ones_like
arange
range
linspace
logspace
eye
empty
empty_like
empty_strided
full
full_like
quantize_per_tensor
quantize_per_channel
dequantize
complex
polar
heaviside
.. _indexing-slicing-joining:
Indexing, Slicing, Joining, Mutating Ops
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated
:nosignatures:
adjoint
argwhere
cat
concat
concatenate
conj
chunk
dsplit
column_stack
dstack
gather
hsplit
hstack
index_add
index_copy
index_reduce
index_select
masked_select
movedim
moveaxis
narrow
nonzero
permute
reshape
row_stack
select
scatter
diagonal_scatter
select_scatter
slice_scatter
scatter_add
scatter_reduce
split
squeeze
stack
swapaxes
swapdims
t
take
take_along_dim
tensor_split
tile
transpose
unbind
unsqueeze
vsplit
vstack
where
.. _generators:
Generators
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
Generator
.. _random-sampling:
Random sampling
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
seed
manual_seed
initial_seed
get_rng_state
set_rng_state
.. autoattribute:: torch.default_generator
:annotation: Returns the default CPU torch.Generator
.. The following doesn't actually seem to exist.
https://github.com/pytorch/pytorch/issues/27780
.. autoattribute:: torch.cuda.default_generators
:annotation: If cuda is available, returns a tuple of default CUDA torch.Generator-s.
The number of CUDA torch.Generator-s returned is equal to the number of
GPUs available in the system.
.. autosummary::
:toctree: generated
:nosignatures:
bernoulli
multinomial
normal
poisson
rand
rand_like
randint
randint_like
randn
randn_like
randperm
.. _inplace-random-sampling:
In-place random sampling
~~~~~~~~~~~~~~~~~~~~~~~~
There are a few more in-place random sampling functions defined on Tensors as well. Click through to refer to their documentation:
- :func:`torch.Tensor.bernoulli_` - in-place version of :func:`torch.bernoulli`
- :func:`torch.Tensor.cauchy_` - numbers drawn from the Cauchy distribution
- :func:`torch.Tensor.exponential_` - numbers drawn from the exponential distribution
- :func:`torch.Tensor.geometric_` - elements drawn from the geometric distribution
- :func:`torch.Tensor.log_normal_` - samples from the log-normal distribution
- :func:`torch.Tensor.normal_` - in-place version of :func:`torch.normal`
- :func:`torch.Tensor.random_` - numbers sampled from the discrete uniform distribution
- :func:`torch.Tensor.uniform_` - numbers sampled from the continuous uniform distribution
Quasi-random sampling
~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated
:nosignatures:
:template: sobolengine.rst
quasirandom.SobolEngine
Serialization
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
save
load
Parallelism
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
get_num_threads
set_num_threads
get_num_interop_threads
set_num_interop_threads
.. _torch-rst-local-disable-grad:
Locally disabling gradient computation
--------------------------------------
The context managers :func:`torch.no_grad`, :func:`torch.enable_grad`, and
:func:`torch.set_grad_enabled` are helpful for locally disabling and enabling
gradient computation. See :ref:`locally-disable-grad` for more details on
their usage. These context managers are thread local, so they won't
work if you send work to another thread using the ``threading`` module, etc.
Examples::
>>> x = torch.zeros(1, requires_grad=True)
>>> with torch.no_grad():
... y = x * 2
>>> y.requires_grad
False
>>> is_train = False
>>> with torch.set_grad_enabled(is_train):
... y = x * 2
>>> y.requires_grad
False
>>> torch.set_grad_enabled(True) # this can also be used as a function
>>> y = x * 2
>>> y.requires_grad
True
>>> torch.set_grad_enabled(False)
>>> y = x * 2
>>> y.requires_grad
False
.. autosummary::
:toctree: generated
:nosignatures:
no_grad
enable_grad
set_grad_enabled
is_grad_enabled
inference_mode
is_inference_mode_enabled
Math operations
---------------
Pointwise Ops
~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated
:nosignatures:
abs
absolute
acos
arccos
acosh
arccosh
add
addcdiv
addcmul
angle
asin
arcsin
asinh
arcsinh
atan
arctan
atanh
arctanh
atan2
arctan2
bitwise_not
bitwise_and
bitwise_or
bitwise_xor
bitwise_left_shift
bitwise_right_shift
ceil
clamp
clip
conj_physical
copysign
cos
cosh
deg2rad
div
divide
digamma
erf
erfc
erfinv
exp
exp2
expm1
fake_quantize_per_channel_affine
fake_quantize_per_tensor_affine
fix
float_power
floor
floor_divide
fmod
frac
frexp
gradient
imag
ldexp
lerp
lgamma
log
log10
log1p
log2
logaddexp
logaddexp2
logical_and
logical_not
logical_or
logical_xor
logit
hypot
i0
igamma
igammac
mul
multiply
mvlgamma
nan_to_num
neg
negative
nextafter
polygamma
positive
pow
quantized_batch_norm
quantized_max_pool1d
quantized_max_pool2d
rad2deg
real
reciprocal
remainder
round
rsqrt
sigmoid
sign
sgn
signbit
sin
sinc
sinh
sqrt
square
sub
subtract
tan
tanh
true_divide
trunc
xlogy
Reduction Ops
~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated
:nosignatures:
argmax
argmin
amax
amin
aminmax
all
any
max
min
dist
logsumexp
mean
nanmean
median
nanmedian
mode
norm
nansum
prod
quantile
nanquantile
std
std_mean
sum
unique
unique_consecutive
var
var_mean
count_nonzero
Comparison Ops
~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated
:nosignatures:
allclose
argsort
eq
equal
ge
greater_equal
gt
greater
isclose
isfinite
isin
isinf
isposinf
isneginf
isnan
isreal
kthvalue
le
less_equal
lt
less
maximum
minimum
fmax
fmin
ne
not_equal
sort
topk
msort
Spectral Ops
~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated
:nosignatures:
stft
istft
bartlett_window
blackman_window
hamming_window
hann_window
kaiser_window
Other Operations
~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated
:nosignatures:
atleast_1d
atleast_2d
atleast_3d
bincount
block_diag
broadcast_tensors
broadcast_to
broadcast_shapes
bucketize
cartesian_prod
cdist
clone
combinations
corrcoef
cov
cross
cummax
cummin
cumprod
cumsum
diag
diag_embed
diagflat
diagonal
diff
einsum
flatten
flip
fliplr
flipud
kron
rot90
gcd
histc
histogram
histogramdd
meshgrid
lcm
logcumsumexp
ravel
renorm
repeat_interleave
roll
searchsorted
tensordot
trace
tril
tril_indices
triu
triu_indices
unflatten
vander
view_as_real
view_as_complex
resolve_conj
resolve_neg
BLAS and LAPACK Operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autosummary::
:toctree: generated
:nosignatures:
addbmm
addmm
addmv
addr
baddbmm
bmm
chain_matmul
cholesky
cholesky_inverse
cholesky_solve
dot
geqrf
ger
inner
inverse
det
logdet
slogdet
lu
lu_solve
lu_unpack
matmul
matrix_power
matrix_exp
mm
mv
orgqr
ormqr
outer
pinverse
qr
svd
svd_lowrank
pca_lowrank
symeig
lobpcg
trapz
trapezoid
cumulative_trapezoid
triangular_solve
vdot
Utilities
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
compiled_with_cxx11_abi
result_type
can_cast
promote_types
use_deterministic_algorithms
are_deterministic_algorithms_enabled
is_deterministic_algorithms_warn_only_enabled
set_deterministic_debug_mode
get_deterministic_debug_mode
set_float32_matmul_precision
get_float32_matmul_precision
set_warn_always
is_warn_always_enabled
_assert
Operator Tags
------------------------------------
.. autoclass:: Tag
:members:
.. Empty submodules added only for tracking.
.. py:module:: torch.contrib
.. py:module:: torch.utils.backcompat
.. This submodule is split manually without a top level page.
.. py:module:: torch.utils
.. This module is only used internally for ROCm builds.
.. py:module:: torch.utils.hipify
.. This module needs to be documented. Adding here in the meantime
.. for tracking purposes
.. py:module:: torch.utils.model_dump
|