1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
|
import collections
import dataclasses
import warnings
from contextlib import contextmanager, nullcontext
from functools import wraps
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
import torch.fx.traceback as fx_traceback
import torch.nn as nn
import torch.utils._pytree as pytree
import torch.utils.dlpack
from torch import Tensor
from torch._subclasses import FakeTensorMode, CrossRefFakeMode
from torch.fx import immutable_collections, Interpreter
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch.nn.utils import stateless
from functorch import make_fx
from functorch.experimental import functionalize
from torch._dispatch.python import enable_python_dispatcher
from . import config
from .named_members_polyfill import _named_buffers, _named_parameters
from .partitioners import default_partition
try:
from torchdynamo import disable as disable_torchdynamo
except ImportError:
def disable_torchdynamo(x):
return x
try:
from torchdynamo.utils import dynamo_timed
except ImportError:
def dynamo_timed(x):
return x
pytree._register_pytree_node(
immutable_collections.immutable_list,
lambda x: (list(x), None),
lambda x, c: immutable_collections.immutable_list(x),
)
pytree._register_pytree_node(
immutable_collections.immutable_dict,
lambda x: (list(x.values()), list(x.keys())),
lambda x, c: immutable_collections.immutable_dict(
{key: value for key, value in zip(c, x)}
),
)
aten = torch.ops.aten
@contextmanager
def preserve_rng_state():
rng_state = torch.clone(torch.random.get_rng_state())
if torch.cuda.is_available():
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
try:
yield
finally:
torch.random.set_rng_state(rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
# Set up hooks so that during backward the fx's stack_trace is properly set
callback_set = False
def setup_stacktrace_preservation_hooks(roots: List):
def iter_graph(roots):
if not roots:
return
seen = set()
q = collections.deque()
for node in roots:
if node is not None:
seen.add(node)
q.append(node)
while q:
node = q.popleft()
for fn, _idx in node.next_functions:
if fn in seen or fn is None:
continue
seen.add(fn)
q.append(fn)
yield node
def get_callback(saved_stack_):
def callback():
global callback_set
fx_traceback.set_stack_trace(saved_stack_)
callback_set = False
return callback
def get_prehook(stack_):
def prehook(grad_output):
global callback_set
if not callback_set:
torch.autograd.variable.Variable._execution_engine.queue_callback(
get_callback(fx_traceback.format_stack())
)
callback_set = True
fx_traceback.set_stack_trace(stack_)
return prehook
def get_posthook(special_stack_):
def posthook(grad_input, grad_output):
fx_traceback.set_stack_trace(special_stack_)
return posthook
for node in iter_graph(roots):
forward_node_stack = node.metadata.get("traceback_", [])
node.register_prehook(get_prehook(forward_node_stack))
special_stack = forward_node_stack.copy()
special_stack.append(
"Gradient addition node due to multiple use of tensor around:"
)
node.register_hook(get_posthook(special_stack))
def create_joint_forward_backward(fn):
def joint_forward_backward(
primals: List[Any], tangents: List[Any]
) -> Tuple[List[Any], List[Any]]:
# Call the forward pass
outs = fn(*primals)
# Get the inputs that need gradients
grad_primals = []
inputs_needs_grads = []
for p in primals:
is_grad_tensor = isinstance(p, Tensor) and p.requires_grad
inputs_needs_grads.append(is_grad_tensor)
if is_grad_tensor:
grad_primals.append(p)
# Get the outputs that need gradients
assert len(tangents) == len(outs)
needed_outs = []
needed_tangents = []
for out, tangent in zip(outs, tangents):
if isinstance(out, Tensor) and out.requires_grad:
needed_outs.append(out)
needed_tangents.append(tangent)
setup_stacktrace_preservation_hooks([out.grad_fn for out in needed_outs])
backward_out = []
# Call the backwards pass
if grad_primals:
with fx_traceback.override_stack_trace():
backward_out = torch.autograd.grad(
needed_outs,
grad_primals,
grad_outputs=needed_tangents,
allow_unused=True,
)
backward_out_iter = iter(backward_out)
return outs, [
next(backward_out_iter) if i else None for i in inputs_needs_grads
]
return joint_forward_backward
def normalize_as_list(x):
if isinstance(x, tuple):
return list(x)
elif isinstance(x, list):
return x
return [x]
aot_autograd_decompositions = {}
# This is a list since looking forward, we can have this arbitrarily nested.
graph_being_compiled: List[str] = []
nth_graph: int = 0
model_name: str = "model"
def set_model_name(name):
global model_name
model_name = name
def get_aot_compilation_context() -> Tuple[List[str], str, int]:
return list(graph_being_compiled), model_name, nth_graph
def get_aot_graph_name() -> str:
"""
Returns the name of the graph being compiled.
"""
global model_name, graph_being_compiled, nth_graph
return f"{model_name}_{'_'.join(graph_being_compiled)}_{nth_graph}"
get_graph_being_compiled = get_aot_graph_name
@contextmanager
def track_graph_compiling(graph_name, increment_index=False):
global graph_being_compiled
graph_being_compiled = [graph_name]
yield
if increment_index:
global nth_graph
nth_graph += 1
graph_being_compiled = []
def make_boxed_func(f):
def g(args):
return f(*args)
g._boxed_call = True
return g
def make_boxed_compiler(compiler):
@wraps(compiler)
def f(fx_g, inps):
out_f = compiler(fx_g, inps)
fx_g = make_boxed_func(out_f)
return fx_g
return f
def call_func_with_args(f, args, steal_args=False):
if not steal_args:
args = list(args)
assert isinstance(args, list)
if hasattr(f, "_boxed_call"):
out = normalize_as_list(f(args))
else:
# TODO: Please remove soon
# https://github.com/pytorch/pytorch/pull/83137#issuecomment-1211320670
warnings.warn(
"Your compiler for AOTAutograd is returning a a function that doesn't take boxed arguments. "
"Please wrap it with functorch.compile.make_boxed_func or handle the boxed arguments yourself. "
"See https://github.com/pytorch/pytorch/pull/83137#issuecomment-1211320670 for rationale."
)
out = normalize_as_list(f(*args))
return out
@dataclasses.dataclass
class AOTConfig:
"""
Configuration for AOTDispatcher
"""
fw_compiler: Callable
bw_compiler: Callable
partition_fn: Callable
decompositions: Dict[Callable, Callable]
def aot_dispatch_base(flat_fn, flat_args: List[Tensor], aot_config: AOTConfig):
fw_module = make_fx(flat_fn, aot_config.decompositions)(*flat_args)
if config.debug_graphs:
print("====== Forward (only) graph ======")
fw_module.print_readable()
with track_graph_compiling("inference"):
compiled_fw = aot_config.fw_compiler(fw_module, flat_args)
@wraps(compiled_fw)
def new_fn(args):
fw_outs = call_func_with_args(compiled_fw, args)
return fw_outs
return new_fn
def aot_dispatch_autograd(flat_fn, flat_args: List[Tensor], aot_config: AOTConfig):
# Deduplicate inputs. Suppose you have:
#
# [a, b, a, c]
#
# We want:
#
# remove_dupe_args([a, b, a, c]) == [a, b, c]
# add_dupe_args([a, b, c]) == [a, b, a, c]
#
# This is done via (respectively):
#
# seen_args = {2} # what to drop
# add_dupe_map = { # how to get args from the deduped list
# 0: 0,
# 1: 1,
# 2: 0,
# 3: 2,
# }
#
# Whether to use flat_args or deduped_flat_args? flat_fn takes flat_args,
# and the autograd.Function must take deduped_flat_args; everything
# else is just getting the types right.
seen_args = {}
keep_arg_mask = []
dropped_args = False
add_dupe_map = {}
duped_arg_len = len(flat_args)
j = 0 # index into deduped_flat_args
for i, t in enumerate(flat_args):
if t in seen_args:
keep_arg_mask.append(False)
dropped_args = True
add_dupe_map[i] = seen_args[t]
continue
keep_arg_mask.append(True)
seen_args[t] = j
add_dupe_map[i] = j
j += 1
# NB: Hot path, avoid set lookups here
def remove_dupe_args(args):
if not dropped_args:
return args
return [t for t, keep in zip(args, keep_arg_mask) if keep]
def add_dupe_args(args):
if not dropped_args:
return args
return [args[add_dupe_map[i]] for i in range(duped_arg_len)]
deduped_flat_args = remove_dupe_args(flat_args)
joint_forward_backward = create_joint_forward_backward(lambda *args: flat_fn(*add_dupe_args(args)))
out = flat_fn(*flat_args)
out = pytree.tree_map(
lambda x: x.detach().contiguous() if isinstance(x, Tensor) else x,
out,
)
if isinstance(out, (list, tuple)):
_num_outs = len(out)
else:
_num_outs = 1
joint_inputs = (deduped_flat_args, out)
if config.use_functionalize:
# Trace once without decompositions, into a graph of ATen ops.
# NB: tracing_mode is real, as it's assumed the calling context setup
# fake tensor mode / symbolic shapes if that is needed
fx_g = make_fx(joint_forward_backward)(*joint_inputs)
def fake_fn(primals, tangents):
with torch.fx.traceback.override_stack_trace():
return torch.fx.Interpreter(fx_g).run(primals, tangents)
# Trace a second time, running functionalization, and THEN running decompositions.
# functionalization only acts on ATen today, and doesn't currently handle
# view and inplace ops that come from primtorch.
# Eventually, functionalization should support primtorch view/inplace ops,
# which will make it ok to run decompositions before functionalization.
fx_g = make_fx(functionalize(fake_fn), aot_config.decompositions)(*joint_inputs)
fx_g.graph.eliminate_dead_code()
fx_g.recompile()
else:
fx_g = make_fx(joint_forward_backward, aot_config.decompositions)(*joint_inputs)
if config.debug_joint:
print("====== Joint graph ======")
fx_g.print_readable()
with torch.no_grad():
with track_graph_compiling("joint"):
fw_module, bw_module = aot_config.partition_fn(fx_g, joint_inputs)
if config.debug_graphs:
print("====== Forward graph ======")
fw_module.print_readable()
print("====== Backward graph ======")
bw_module.print_readable()
with track_graph_compiling("forward"):
compiled_fw_func = aot_config.fw_compiler(fw_module, deduped_flat_args)
class CompiledFunction(torch.autograd.Function):
compiled_fw = compiled_fw_func
compiled_bw = None
num_outs = _num_outs
@staticmethod
@disable_torchdynamo
def forward(ctx, *deduped_flat_tensor_args):
fw_outs = call_func_with_args(
CompiledFunction.compiled_fw, deduped_flat_tensor_args
)
num_outs = CompiledFunction.num_outs
ctx.save_for_backward(*fw_outs[num_outs:])
return tuple(fw_outs[0:num_outs])
@staticmethod
@disable_torchdynamo
def backward(ctx, *flat_args):
contiguous_args = [t.contiguous() for t in flat_args]
all_args = list(ctx.saved_tensors) + list(contiguous_args)
if CompiledFunction.compiled_bw is None:
with track_graph_compiling("backward", True):
CompiledFunction.compiled_bw = aot_config.bw_compiler(
bw_module, all_args
)
ctx.maybe_clear_saved_tensors()
out = call_func_with_args(
CompiledFunction.compiled_bw, all_args, steal_args=True
)
return tuple(out)
@wraps(CompiledFunction.apply)
def compiled_function(*args):
return CompiledFunction.apply(*remove_dupe_args(args))
return compiled_function
@dynamo_timed
def create_aot_dispatcher_function(
flat_fn, flat_args: List[Tensor], aot_config: AOTConfig
):
"""
Traces the forward and backward graphs of the attr:`flat_fn` to generate a
joint graph. The joint graph is an Fx graph with Aten ops. Please refer to
the tracing mechanism to understand the graph capturing details.
The joint graph is then passed through attr:`partition_fn` to isolate the
forward and backward portions, which are then respectively compiled via the
provided attr:`fw_compiler` and attr:`bw_compiler`.
The resulting compiled forward and backward graphs are then wrapped up in a
``torch.autograd.Function`` object.
"""
# This is the main entry point.
# TODO: Chillee argues that dynamo itself should pass in fake tensors to
# the list of arguments when compiling; at the moment we do not do this
if aot_config.decompositions is None:
aot_config.decompositions = {}
aot_config.decompositions = {
**aot_autograd_decompositions,
**aot_config.decompositions,
}
# NB: don't bother setting allow_fallback_kernels; this should not actually
# be configurable in fake tensor, we should automatically do the right
# thing
if config.debug_fake_cross_ref:
# This is a little messy but TorchDynamo directly changes `use_fake_tensor`
# so it's not enough for user to change the config manually
# TODO: have TorchDynamo read in `use_fake_tensor` from os environ /
# coordinate flags
config.use_fake_tensor = False
fake_mode = FakeTensorMode() if config.use_fake_tensor else nullcontext()
cross_ref = CrossRefFakeMode() if config.debug_fake_cross_ref else nullcontext()
python_dispatcher_mode = enable_python_dispatcher() if config.use_dynamic_shapes else nullcontext()
shape_env = ShapeEnv() if config.use_dynamic_shapes else None
with preserve_rng_state(), cross_ref, fake_mode, python_dispatcher_mode:
def process_inputs(flat_args):
if config.use_fake_tensor:
def convert(x):
return fake_mode.from_tensor(x, shape_env=shape_env)
return pytree.tree_map_only(Tensor, convert, flat_args)
else:
return flat_args
fake_flat_tensor_args = process_inputs(flat_args)
needs_autograd = (
any(
[
x.requires_grad
for x in fake_flat_tensor_args
if isinstance(x, Tensor)
]
)
and torch.is_grad_enabled()
)
# crappy version of dispatcher
# TODO: Do this properly
if needs_autograd:
return make_boxed_func(
aot_dispatch_autograd(flat_fn, fake_flat_tensor_args, aot_config)
)
else:
return aot_dispatch_base(flat_fn, fake_flat_tensor_args, aot_config)
# Inspired by autodidax (thanks!)
class PytreeThunk:
spec = None
# These are some kinda dumb microoptimizations that save about 3-4 us of overhead.
is_simple = (
None # if the output spec is a tuple/list, we won't bother unflattening it.
)
is_really_simple = None # if the output spec is a LeafSpec
def set(self, spec):
assert self.spec is None or self.spec == spec
self.spec = spec
if type(self.spec) in [tuple, list] and all(
isinstance(i, pytree.LeafSpec) for i in spec.children_specs
):
self.is_simple = True
if isinstance(self.spec, pytree.LeafSpec):
self.is_really_simple = True
def unflatten(self, x):
if self.is_really_simple:
return x[0]
if self.is_simple:
return x
return pytree.tree_unflatten(x, self.spec)
KNOWN_TYPES = [torch.Tensor, int, str, float, bool]
def aot_function(
fn: Callable,
fw_compiler: Callable,
bw_compiler: Optional[Callable] = None,
partition_fn: Callable = default_partition,
decompositions: Optional[Dict] = None,
hasher_type=None, # deprecated
static_argnums: Optional[Tuple[int]] = None, # deprecated
) -> Callable:
"""
Traces the forward and backward graph of :attr:`fn` using torch dispatch
mechanism, and then compiles the generated forward and backward graphs
through :attr:`fw_compiler` and :attr:`bw_compiler`.
:func:`aot_function` traces the forward and backward graph ahead of time,
and generates a joint forward and backward graph. :attr:`partition_fn` is
then used to separate out forward and backward graphs. The partitioner
function can be used to perform optimizations such as recomputation. One can
set `decompositions` dictionary to decompose the operators into a sequence
of core or simpler operators supported by the backend compilers.
:func:`aot_function` uses a compilation cache, based on input tensor
properties, to detect when there is a need of recompilation.
.. warning::
This API is experimental and likely to change.
Args:
fn (Callable): A Python function that takes one ore more arguments. Must
return one or more Tensors.
fw_compiler (Callable): A Python function that accepts an Fx graph with
Aten ops and input args, and returns a Callable that semantically is
equivalent to the input Fx graph.
bw_compiler (Optional[Callable]): A Python function that accepts an
Fx graph with Aten ops and input args, and returns a Callable that
semantically is equivalent to the input Fx graph. Default: None
(when None, it defaults to the :attr:`fw_compiler`)
partition_fn (Callable): A Python function that takes a joint forward
and backward graph, and partitions it into separate forward and
backward graphs.
decompositions (Dict): A dictionary to define the decomposition of
larger Aten ops into simpler or core Aten ops.
Returns:
Returns a ``Callable`` that retains the eager behavior of the original
:attr:`fn`, but with forward and backward graph compiled via
:attr:`fw_compile` and :attr:`bw_compile`.
A simple example usage of :func:`aot_function` is as follows. This example
will print the forward and backward graphs of the function ``fn``
>>> fn = lambda x : x.sin().cos()
>>> def print_compile_fn(fx_module, args):
>>> print(fx_module)
>>> return fx_module
>>> aot_fn = aot_function(fn, print_compile_fn)
>>> x = torch.randn(4, 5, requires_grad=True)
>>> aot_fn(x)
"""
if static_argnums is not None:
raise RuntimeError("static_argnums has been deprecated - manually wrap your function or use torchdynamo.")
if bw_compiler is None:
bw_compiler = fw_compiler
aot_config = AOTConfig(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=partition_fn,
decompositions=decompositions,
)
cached_res = None
@wraps(fn)
def returned_function(*args, **kwargs):
nonlocal cached_res
# Now flatten the tensor args
flat_args, _ = pytree.tree_flatten((args, kwargs))
# Compile the function and save it in the cache
if cached_res is None:
# Save the args_spec for flat_tensor_args to unflatten while tracing
_, tensor_args_spec = pytree.tree_flatten((args, kwargs))
out_spec = PytreeThunk()
def flat_fn(*flat_args):
# The input are flattened tensor args. Prepare the args in the
# order that original function expects. Add static args as well.
# They will appear as tensor constants in the traced graph.
nonlocal out_spec
args, kwargs = pytree.tree_unflatten(
flat_args, tensor_args_spec
)
tree_out = fn(*args, **kwargs)
flat_out, spec = pytree.tree_flatten(tree_out)
for i in flat_out:
is_known_type = False
for j in KNOWN_TYPES:
if isinstance(i, j):
is_known_type = True
break
if not is_known_type:
raise RuntimeError(
f"Found {type(i)} in output, which is not a known type. "
"If this type holds tensors, you need to register a pytree for it. "
"See https://github.com/pytorch/functorch/issues/475 for a brief "
"explanation why. If you don't need to register a pytree, please "
"leave a comment explaining your use case and we'll make this more "
"ergonomic to deal with"
)
out_spec.set(spec)
return flat_out
compiled_fn = create_aot_dispatcher_function(
flat_fn,
flat_args,
aot_config,
)
cached_res = (compiled_fn, out_spec)
cached_fn, out_spec = cached_res
out = cached_fn(flat_args)
return out_spec.unflatten(out)
return returned_function
def aot_module(mod: nn.Module, *args, **kwargs) -> nn.Module:
"""
Traces the forward and backward graph of :attr:`mod` using torch dispatch
tracing mechanism. It is wrapper function, that underneath uses
:func:`aot_function` to perform tracing and compilation.
:func:`aot_module` lifts the parameters and buffers of ``nn.Module`` as inputs
to a new callable which is then compiled through :func:`aot_function`.
.. warning::
This API is experimental and likely to change.
Args:
mod (Callable): A ``nn.Module`` module.
args : args to be passed to :func:`aot_function`
kwargs : kwargs to be passed to :func:`aot_function`
Returns:
Returns a ``nn.Module`` that retains the eager behavior of the original
:attr:`mod`, but with forward and backward graph compiled.
"""
def functional_call(named_params, named_buffers, *args, **kwargs):
params_and_buffers = {**named_params, **named_buffers}
return stateless.functional_call(mod, params_and_buffers, args, kwargs)
compiled_f = aot_function(functional_call, *args, **kwargs)
class AOTModule(nn.Module):
def __init__(self):
super(AOTModule, self).__init__()
self.orig_module = mod
def forward(self, *args, **kwargs):
return compiled_f(
dict(_named_parameters(mod, remove_duplicate=False)),
dict(_named_buffers(mod, remove_duplicate=False)),
*args,
**kwargs,
)
return AOTModule()
def aot_module_simplified(mod: nn.Module, *top_args, **top_kwargs) -> nn.Module:
"""
This is the simplified or low overhead version of aot_module. For frontends
like TorchDynamo, the input functions/modules to AOT are static and have
unpacked inputs/outputs. This gives us an opportunity to remove the
(1) pytree overhead to parse inputs/outputs,
(2) AOT Autograd cache,
(3) Reading of params/buffers in every forward call
:func:`aot_module_simplified` removes these overheads.
"""
#########################################################
params = {
**dict(_named_parameters(mod, remove_duplicate=False)),
**dict(_named_buffers(mod, remove_duplicate=False)),
}
params_flat, params_spec = pytree.tree_flatten(params)
params_flat = tuple(params_flat)
params_len = len(params_flat)
def functional_call(*args, **kwargs):
with stateless._reparametrize_module(
mod, pytree.tree_unflatten(args[:params_len], params_spec)
):
if isinstance(mod, torch.fx.GraphModule):
with fx_traceback.override_stack_trace(), warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "Anomaly Detection has been enabled."
)
with torch.autograd.detect_anomaly(check_nan=False):
out = Interpreter(mod).run(*args[params_len:], **kwargs)
else:
out = mod(*args[params_len:], **kwargs)
if not isinstance(out, (tuple, list)):
raise RuntimeError(
"Graph output must be a tuple(). This is so that we can avoid "
"pytree processing of the ouputs. Please change the module to "
"have tuple outputs or use aot_module instead."
)
return out
def aot_function_simplified(
fn: Callable,
fw_compiler: Callable,
bw_compiler: Optional[Callable] = None,
partition_fn: Callable = default_partition,
decompositions: Optional[Dict] = None,
hasher_type=None,
static_argnums=None,
) -> Callable:
assert static_argnums is None
if bw_compiler is None:
bw_compiler = fw_compiler
aot_config = AOTConfig(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
partition_fn=partition_fn,
decompositions=decompositions,
)
compiled_fn = None
@wraps(fn)
def new_func(*args):
nonlocal compiled_fn
if compiled_fn is None:
compiled_fn = create_aot_dispatcher_function(
fn,
args,
aot_config,
)
return compiled_fn(args)
return new_func
compiled_f = aot_function_simplified(functional_call, *top_args, **top_kwargs)
if top_kwargs:
def forward(*args, **kwargs):
return compiled_f(
*params_flat,
*args,
**kwargs,
)
else:
def forward(*args):
return compiled_f(
*params_flat,
*args,
)
forward.zero_grad = mod.zero_grad
forward.named_parameters = mod.named_parameters
return forward
compiled_function = aot_function
compiled_module = aot_module
|