1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
import torch.fx as fx
import copy
import torch
import math
from typing import Callable, List
from functools import wraps, partial
from dataclasses import dataclass
from .compile_utils import get_placeholders, get_outputs
class ConcreteProp(torch.fx.Interpreter):
def run_node(self, n):
result = super().run_node(n)
found_tensor = False
def extract_tensor_meta(obj):
if isinstance(obj, torch.Tensor):
nonlocal found_tensor
found_tensor = True
return obj
else:
return obj
from torch.fx.node import map_aggregate
concrete_value = map_aggregate(result, extract_tensor_meta)
if found_tensor:
n.meta['concrete_value'] = concrete_value
return result
def propagate(self, *args):
return super().run(*args)
# inplace modifies node/inps
def _convert_node_to_placeholder(node, inps):
if node.op == 'output' or node.op == "placeholder":
return
node.op = 'placeholder'
node.args = ()
node.kwargs = {}
node.target = node.name
concrete_val = node.meta.get('concrete_value', None)
if isinstance(concrete_val, torch.Tensor):
inps.append(concrete_val)
else:
inps.append(torch.zeros(()))
for tuple_user in list(node.users):
_convert_node_to_placeholder(tuple_user, inps)
def dump_state(fx_g, inps):
print(f"""
# Working Repro with {len(fx_g.graph.nodes)} nodes
inps = {[(i.shape, i.dtype, i.device.type) for i in inps]}
inps = [torch.zeros(())] + [torch.ones(shape, dtype=dtype, device=device) for (shape, dtype, device) in inps]
{fx_g.code}
""")
@dataclass
class ReproState:
graph: fx.Graph
inps: List[torch.Tensor]
def minifier(fail_f: fx.GraphModule, inps, module_fails, dump_state: Callable = dump_state):
"""
Minimizes a FX graph with given inputs, such that the resulting FX graph still returns True for module_fails.
Does 2 main strategies:
1. Truncates suffix: Removes some suffix from the graph and sets a new output.
2. Delta Debugging: Tries replacing half of the graph with inputs. If fails,
tries replacing quarter of the graph, etc.
>>> failing_function = fx.symbolic_trace(f)
>>> minimize(failing_function, [torch.randn(5)], lambda fx_g, inps: fx_g(*inps))
note: module_fails returns True if it fails.
"""
failing_graph = fail_f.graph
cur_size = len(failing_graph.nodes)
num_queries = 0
def deepcopy_fx_graph(fx_graph):
return fx.GraphModule(fail_f, copy.deepcopy(fx_graph)).graph
def graph_fails(graph, inps):
nonlocal num_queries
graph = copy.deepcopy(graph)
num_queries += 1
mod = fx.GraphModule(fail_f, graph)
mod.graph.lint()
return module_fails(mod, inps)
ConcreteProp(fail_f).propagate(*inps)
if not graph_fails(failing_graph, inps):
raise RuntimeError("Input graph did not fail the tester")
print(f"Started off with {cur_size} nodes")
def _register_strategy(strategy: Callable, name: str):
@wraps(strategy)
def new_func(old_state: ReproState, granularity=1):
print()
print(f"Strategy: {name} (G: {granularity}) ({len(old_state.graph.nodes)} nodes, {len(old_state.inps)} inputs)")
new_state = strategy(deepcopy_fx_graph(old_state.graph), list(old_state.inps), granularity)
if new_state is not None:
new_nodes = len(new_state.graph.nodes)
old_nodes = len(old_state.graph.nodes)
new_inps = len(new_state.inps)
old_inps = len(old_state.inps)
new_outs = len(get_outputs(new_state.graph))
old_outs = len(get_outputs(old_state.graph))
progress_made = False
if new_nodes < old_nodes:
progress_made = True
print(f"SUCCESS: Went from {old_nodes} to {new_nodes} nodes")
if new_inps > old_inps:
progress_made = True
print(f"SUCCESS: Went from {old_inps} to {new_inps} inputs")
if new_outs < old_outs:
progress_made = True
print(f"SUCCESS: Went from {old_outs} to {new_outs} outputs")
if not progress_made:
raise RuntimeError("Success raised but no progress made?")
if not graph_fails(new_state.graph, new_state.inps):
print("WARNING: Something went wrong, not applying this minification")
return None
return new_state
else:
print(f"FAIL: {name}")
return None
return new_func
def register_strategy(name: str):
return partial(_register_strategy, name=name)
@register_strategy("Truncate suffix")
def remove_suffix(cur_graph, cur_inps, granularity):
tested = set()
new_graph = fx.Graph()
env = {}
for idx, node in enumerate(cur_graph.nodes):
new_node = new_graph.node_copy(node, lambda x: env[x])
if node.op not in ['placeholder', 'output']:
# If idx is divisible by (granularity * 2), it would have been checked already.
if idx % granularity == 0 and (idx % (granularity * 2) != 0) and idx not in tested:
output_node = new_graph.output((new_node,))
if len(new_graph.nodes) < len(cur_graph.nodes) and graph_fails(new_graph, cur_inps):
return ReproState(new_graph, cur_inps)
else:
tested.add(idx)
new_graph.erase_node(output_node)
env[node] = new_node
return None
@register_strategy("Remove outputs")
def remove_outputs(cur_graph, cur_inps, granularity):
granularity = max(1, granularity // 2)
for idx, node in enumerate(cur_graph.nodes):
node.idx = idx
if node.op == 'output':
output = node
break
output_args = sorted(output.args[0], key=lambda x: x.idx if isinstance(x, fx.Node) else int(1e9))
if len(output_args) == 1:
return None
for idx in range(0, len(output_args), granularity):
output.args = (output_args[:idx] + output_args[idx + granularity:],)
if graph_fails(cur_graph, cur_inps):
return ReproState(cur_graph, cur_inps)
return None
def remove_unused_inputs_unchecked(cur_state: ReproState):
cur_graph = cur_state.graph
cur_inps = cur_state.inps
ph_nodes = get_placeholders(cur_graph)
assert len(ph_nodes) == len(cur_inps)
new_inps = []
for idx in range(len(ph_nodes)):
if len(ph_nodes[idx].users) == 0:
cur_graph.erase_node(ph_nodes[idx])
else:
new_inps.append(cur_inps[idx])
if len(new_inps) < len(cur_inps):
return ReproState(cur_graph, new_inps)
return None
def remove_unused_inputs_checked(cur_state: ReproState):
new_state = remove_unused_inputs_unchecked(cur_state)
if new_state is not None and graph_fails(new_state.graph, new_state.inps):
return new_state
return None
def _remove_unused_wrapper(cur_graph, cur_inps, granularity):
return remove_unused_inputs_checked(ReproState(cur_graph, cur_inps))
remove_unused_inputs = register_strategy("Remove unused inputs")(_remove_unused_wrapper)
@register_strategy("Eliminate dead code")
def eliminate_dead_code(cur_graph, cur_inps, granularity):
if cur_graph.eliminate_dead_code() and graph_fails(cur_graph, cur_inps):
return ReproState(cur_graph, cur_inps)
return None
def _consolidate_placeholders(cur_graph):
new_graph = fx.Graph()
env = {}
for node in cur_graph.nodes:
if node.op == 'placeholder':
new_node = new_graph.node_copy(node, lambda x: env[x])
env[node] = new_node
for node in cur_graph.nodes:
if node.op != 'placeholder':
new_node = new_graph.node_copy(node, lambda x: env[x])
env[node] = new_node
return new_graph
@register_strategy("Delta Debugging")
def delta_debugging(cur_graph: fx.Graph, cur_inps, granularity):
num_nodes = len(cur_graph.nodes)
for start_range in range(0, num_nodes, granularity):
is_removing = False
new_graph = deepcopy_fx_graph(cur_graph)
new_inps = cur_inps[:]
end_range = min(num_nodes, start_range + granularity)
for idx in range(start_range, end_range):
new_node = list(new_graph.nodes)[idx]
if new_node.op not in ['placeholder', 'output']:
is_removing = True
_convert_node_to_placeholder(new_node, new_inps)
if not is_removing:
continue
new_graph = _consolidate_placeholders(new_graph)
new_state = remove_unused_inputs_unchecked(ReproState(new_graph, new_inps))
if new_state is None:
new_state = ReproState(new_graph, new_inps)
if graph_fails(new_state.graph, new_state.inps):
return ReproState(new_state.graph, new_state.inps)
return None
failing_state = ReproState(failing_graph, inps)
def try_granularity(failing_state, granularity, use_non_granular):
print(f"Trying granularity {granularity}")
strategies = []
num_nodes = len(failing_state.graph.nodes)
num_outputs = len(get_outputs(failing_state.graph))
if num_outputs > num_nodes // 2:
strategies += [remove_outputs]
if use_non_granular:
strategies += [eliminate_dead_code, remove_unused_inputs]
strategies += [remove_suffix, delta_debugging]
for strategy in strategies:
new_state = strategy(failing_state, granularity)
if new_state is not None:
return new_state
return None
while True:
dump_state(fx.GraphModule(fail_f, failing_state.graph), failing_state.inps)
granularity = int(2**(math.floor(math.log2(len(failing_state.graph.nodes)))))
new_state = try_granularity(failing_state, granularity, use_non_granular=True)
if new_state is not None:
failing_state = new_state
continue
granularity //= 2
has_progress = False
while granularity >= 1:
new_state = try_granularity(failing_state, granularity, use_non_granular=False)
if new_state is not None:
failing_state = new_state
has_progress = True
break
granularity //= 2
if has_progress:
continue
new_state = remove_outputs(failing_state, 1)
if new_state is not None:
failing_state = new_state
continue
break
if not graph_fails(failing_state.graph, failing_state.inps):
raise RuntimeError("Uh oh, something went wrong :( Final graph is not failing")
print(f"Made {num_queries} queries")
failing_fx = fx.GraphModule(fail_f, failing_state.graph)
dump_state(failing_fx, failing_state.inps)
print("Wrote minimal repro out to repro.py")
return failing_fx, failing_state.inps
|