File: pointwise_scorecard.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (229 lines) | stat: -rw-r--r-- 5,945 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import sys
import time
import torch
import inspect
import itertools

from functorch import pointwise_operator

torch.set_num_threads(1)
torch._C._debug_set_fusion_group_inlining(False)

def rand(*shape):
    return torch.rand(*shape).mul(16).add(1)


# ------------------------------------------------------------------------------
# Shape test cases
# ------------------------------------------------------------------------------
def scalar():
    return (rand(1), rand(1))

def small():
    return (rand(32), rand(32))

def small_2d():
    return (rand(1, 32), rand(1, 32))

def small_broadcast():
    return (rand(4, 32), rand(32))

def medium():
    return (rand(32, 12, 64, 64), rand(32, 12, 64, 64))

def medium_sliced():
    return (rand(32, 12, 64, 64)[..., ::2],
            rand(32, 12, 64, 64)[..., ::2])

def medium_transpose():
    return (rand(32, 12, 64, 64).transpose(-1, -2),
            rand(32, 12, 64, 64).transpose(-1, -2))

def medium2():
    return (rand(32, 3, 224, 224), rand(32, 3, 224, 224))

def medium3d():
    return (rand(16, 32, 64), rand(16, 32, 64))

def medium_channels_last():
    return (rand(32, 3, 224, 224).to(memory_format=torch.channels_last),
            rand(32, 3, 224, 224).to(memory_format=torch.channels_last))

def medium_broadcast():
    return (rand(32, 12, 64, 64), rand(64))

def medium_broadcast_channels_last():
    return (rand(32, 3, 223, 223).to(memory_format=torch.channels_last),
            rand(3, 1, 1))

def large():
    return (rand(8192, 8192), rand(8192, 8192))

def large_transpose():
    return (rand(8192, 8192).transpose(0, 1),
            rand(8192, 8192).transpose(0, 1))

def large_channels_last():
    return (rand(32, 32, 256, 256).to(memory_format=torch.channels_last),
            rand(32, 32, 256, 256).to(memory_format=torch.channels_last))

def pathological_broadcast():
    return (rand(1, 32, 32, 2), rand(1024, 1, 1, 2))

# ------------------------------------------------------------------------------
# Operator test cases
# ------------------------------------------------------------------------------
def add(a, b):
    return a + b

def sub(a, b):
    return a - b

def mul(a, b):
    return a * b

def div(a, b):
    return a / b

def relu(a):
    return a.relu()

def sigmoid(a):
    return a.sigmoid()

def tanh(a):
    return a.tanh()

def log(a):
    return a.log()

def exp(a):
    return a.exp()

def square(a):
    return a ** 2

def fma(a, b):
    return a * b + b

def hardswish(a):
    return a * (a + 3.0).clamp(0.0, 6.0) / 6.0

def native_hardswish(a):
    return torch._C._nn.hardswish(a)

def softplus(a):
    return (a * 1.0).exp().log1p() / 1.0

def mish(a):
    return a * ((a * 1.0).exp().log1p() / 1.0).tanh()

# ------------------------------------------------------------------------------
# Helpers
# ------------------------------------------------------------------------------
def time_cpu(fn, args, iters):
    s = time.perf_counter()
    for _ in range(iters):
        fn(*args)
    e = time.perf_counter()
    return e - s

def time_cuda(fn, args, iters):
    start = torch.cuda.Event(enable_timing=True)
    end = torch.cuda.Event(enable_timing=True)
    start.record()
    for _ in range(iters):
        fn(*args)
    end.record()
    torch.cuda.synchronize()
    return start.elapsed_time(end) / 1e3

def benchmark_with_timer(fn, args, timer):
    timer(fn, args, 3)
    calibration = timer(fn, args, 1)
    iters = int(1.0 / calibration)
    return timer(fn, args, iters) / iters

def benchmark(fn, args):
    timer = time_cpu if args[0].device.type == "cpu" else time_cuda
    return benchmark_with_timer(fn, args, timer)

def micros(s):
    return f"{s * 1e6:.1f}"

shapes = [
    scalar,
    small,
    small_2d,
    small_broadcast,
    medium,
    medium2,
    medium3d,
    medium_sliced,
    medium_transpose,
    medium_channels_last,
    medium_broadcast,
    medium_broadcast_channels_last,
    large,
    large_transpose,
    large_channels_last,
    pathological_broadcast,
]

operators = [
    add,
    sub,
    mul,
    div,
    relu,
    sigmoid,
    tanh,
    log,
    exp,
    square,
    fma,
    hardswish,
    native_hardswish,
]

nope = set()
for shape, operator in itertools.product(shapes, operators):
    nargs = len(inspect.signature(operator).parameters)
    args = shape()[:nargs]

    try:
        if shape == medium_transpose:
            raise RuntimeError("pointwise_operator hangs on medium_transpose")
        pw_op = pointwise_operator(operator)
        torch.testing.assert_allclose(operator(*args), pw_op(*args))
    except Exception:
        print(f"pointwise_operator failed on {operator.__name__}, {shape.__name__}")
        nope.add((operator, shape))

    ts_op = torch.jit.script(operator)
    torch.testing.assert_allclose(operator(*args), ts_op(*args))


print("fuser,device,operator,shape,time")
results = []
for shape, operator in itertools.product(shapes, operators):
    nargs = len(inspect.signature(operator).parameters)
    args = shape()[:nargs]

    result = benchmark(operator, args)
    print(",".join(["eager", args[0].device.type, operator.__name__, shape.__name__, micros(result)]))
    try:
        if shape == medium_transpose:
            raise RuntimeError("pointwise_operator hangs on medium_transpose")
        if (operator, shape) in nope:
            raise RuntimeError("pointwise_operator fails on medium_transpose")
        pw_op = pointwise_operator(operator)
        result = benchmark(pw_op, args)
        print(",".join(["pointwise", args[0].device.type, operator.__name__, shape.__name__, micros(result)]))
    except Exception:
        print(",".join(["pointwise", args[0].device.type, operator.__name__, shape.__name__, micros(float("nan"))]))

    ts_op = torch.jit.script(operator)
    result = benchmark(ts_op, args)
    print(",".join(["fuser", args[0].device.type, operator.__name__, shape.__name__, micros(result)]))
    sys.stdout.flush()