1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
import torch
from functorch.compile import memory_efficient_fusion
import benchmark_helper
device = "cuda"
dtype = torch.float16
# LightSeq pattern 1
class DropoutResBias:
@staticmethod
def fn(input, bias, residual):
a = torch.add(input, bias)
b = torch.nn.functional.dropout(a, p=0.7, training=True)
c = b + residual
return c
@staticmethod
def args():
batch_size, seq_len, hidden_size = 32, 196, 1024
input = torch.randn(
batch_size,
seq_len,
hidden_size,
requires_grad=True,
device=device,
dtype=dtype,
)
bias = torch.randn(hidden_size, requires_grad=True, device=device, dtype=dtype)
residual = torch.randn(
batch_size,
seq_len,
hidden_size,
requires_grad=False,
device=device,
dtype=dtype,
)
args = (input, bias, residual)
return args
class DropoutResBiasScalar:
@staticmethod
def fn(input, bias, residual, p: float):
a = torch.add(input, bias)
b = torch.nn.functional.dropout(a, p, training=True)
c = b + residual
return c
@staticmethod
def args():
batch_size, seq_len, hidden_size = 32, 196, 1024
input = torch.randn(
batch_size,
seq_len,
hidden_size,
requires_grad=True,
device=device,
dtype=dtype,
)
bias = torch.randn(hidden_size, requires_grad=True, device=device, dtype=dtype)
residual = torch.randn(
batch_size,
seq_len,
hidden_size,
requires_grad=False,
device=device,
dtype=dtype,
)
args = (input, bias, residual, 0.7)
return args
# LightSeq pattern 2
class BiasReluDropout:
@staticmethod
def fn(input, bias):
a = torch.add(input, bias)
b = torch.nn.functional.relu(a)
c = torch.nn.functional.dropout(b, p=0.6, training=True)
return c
@staticmethod
def args():
batch_size = 32
seq_len = 196
intermediate_size = 4096
input = torch.randn(
batch_size,
seq_len,
intermediate_size,
requires_grad=True,
device=device,
dtype=dtype,
)
bias = torch.randn(
intermediate_size, requires_grad=True, device=device, dtype=dtype
)
args = (input, bias)
return args
class BiasDropoutResLayerNorm:
@staticmethod
def fn(input, bias, residual):
hidden_size = 1024
a = torch.add(input, bias)
b = torch.nn.functional.dropout(a, p=0.7, training=True)
c = b + residual
d = torch.nn.functional.layer_norm(c, normalized_shape=(hidden_size,))
return d
@staticmethod
def args():
batch_size = 32
seq_len = 196
hidden_size = 1024
input = torch.randn(
batch_size,
seq_len,
hidden_size,
requires_grad=True,
device=device,
dtype=dtype,
)
bias = torch.randn(hidden_size, requires_grad=True, device=device, dtype=dtype)
residual = torch.randn(
batch_size,
seq_len,
hidden_size,
requires_grad=False,
device=device,
dtype=dtype,
)
args = (input, bias, residual)
return args
class LayerNormSigmoid:
@staticmethod
def fn(inp):
hidden_size = 512
a = torch.nn.functional.layer_norm(inp, normalized_shape=(hidden_size,))
b = torch.sigmoid(a)
return b
@staticmethod
def args():
batch_size = 8192
hidden_size = 512
inp = torch.randn(
batch_size, hidden_size, requires_grad=True, device=device, dtype=dtype
)
args = (inp,)
return args
for cl in [DropoutResBias, BiasReluDropout, DropoutResBiasScalar, BiasDropoutResLayerNorm, LayerNormSigmoid]:
# Clear the compile cache
# Get the function and inputs
obj = cl()
fn = obj.fn
args = obj.args()
# Find the static args
static_argnums = []
for idx, arg in enumerate(args):
if not isinstance(arg, torch.Tensor):
static_argnums.append(idx)
# Get the optimized function
opt_fn = memory_efficient_fusion(fn, static_argnums)
# Profile cuda kernels
benchmark_helper.profile_cuda_kernels(fn, args, "Eager")
with torch.jit.fuser("fuser2"):
benchmark_helper.profile_cuda_kernels(opt_fn, args, "AOTAutograd")
# Time it with Torch Timer
benchmark_helper.time_with_torch_timer(fn, args, "Eager")
with torch.jit.fuser("fuser2"):
benchmark_helper.time_with_torch_timer(opt_fn, args, "AOTAutograd")
# Time it with manual Timer
benchmark_helper.time_with_manual_timer(fn, args, "Eager")
with torch.jit.fuser("fuser2"):
benchmark_helper.time_with_manual_timer(opt_fn, args, "AOTAutograd")
|