1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
import torch
from torch.profiler import profile, record_function, ProfilerActivity
from torch.utils.benchmark import Timer
import time
def profile_cuda_kernels(fn, args, string_id="Model time"):
print("################################################")
print(f"#### Profiling for {string_id} starts #########")
print("################################################")
warmup = 50
old_args = args[:]
n_repeats = 1
n_layers = 1
ref = fn(*old_args)
gO = torch.rand_like(ref)
for _ in range(0, warmup // n_layers):
args = list(old_args[:])
ref = fn(*args)
ref.backward(gO)
torch.cuda.synchronize()
# Forward profile
def fwd_run():
for _ in range(0, n_repeats // n_layers):
args = list(old_args[:])
for arg in args:
if isinstance(arg, torch.Tensor):
arg.grad = None
ref = fn(*args)
print(f"###### Forward profile for {string_id} starts #####")
with profile(activities=[ProfilerActivity.CUDA], record_shapes=True) as prof:
with record_function("baseline"):
fwd_run()
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=30))
print(f"###### Forward profile for {string_id} ends #####")
# Backward profile
def bwd_run():
for _ in range(0, n_repeats // n_layers):
args = list(old_args[:])
for arg in args:
if isinstance(arg, torch.Tensor):
arg.grad = None
ref = fn(*args)
print(f"###### Backward profile for {string_id} starts #####")
torch.cuda.synchronize()
with profile(
activities=[ProfilerActivity.CUDA], record_shapes=True
) as prof:
with record_function("baseline"):
ref.backward(gO)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=30))
torch.cuda.synchronize()
print(f"###### Backward profile for {string_id} ends #####")
bwd_run()
print("################################################")
print(f"#### Profiling for {string_id} ends #########")
print("################################################\n\n\n\n")
def time_with_torch_timer(fn, args, string_id, kwargs=None):
if kwargs is None:
kwargs = {}
print("################################################")
print(f"#### Torch Timer for {string_id} starts #########")
print("################################################")
ref = fn(*args, **kwargs)
gO = torch.rand_like(ref)
env = {"args": args, "gO": gO, "kwargs": kwargs, "fn": fn}
grad_none = {"for x in args: x.grad=None"}
fn_call = "fn(*args, **kwargs)"
# Measure end-to-end fwd time
timer = Timer(stmt=f"{fn_call}", globals=env)
fwd_latency = round(timer.timeit(1000).mean * 10 ** 6, 3)
timer_blocked = timer.blocked_autorange()
print(f"Forward = {fwd_latency}")
# Measure end-to-end fwd bwd
timer = Timer(
stmt=f"{grad_none}; fwd = {fn_call}; fwd.backward(gO)",
globals=env,
)
fwd_bwd_latency = round(timer.timeit(1000).mean * 10 ** 6, 3)
timer_blocked = timer.blocked_autorange()
# print(f"Forward + sum + Backward = {fwd_sum_bwd_latency}")
bwd_latency = round(fwd_bwd_latency - fwd_latency, 3)
print(f"Backward = {bwd_latency}")
print("################################################")
print(f"#### Torch Timer for {string_id} ends ###############")
print("################################################\n\n\n\n")
def time_with_manual_timer(fn, args, string_id):
print("################################################")
print(f"#### Manual Timer for {string_id} starts #########")
print("################################################")
warmup = 50
repeats = 1000
old_args = args[:]
ref = fn(*old_args)
gO = torch.rand_like(ref)
for _ in range(0, warmup):
args = list(old_args[:])
for arg in args:
if isinstance(arg, torch.Tensor):
arg.grad = None
ref = fn(*args)
ref.backward(gO)
torch.cuda.synchronize()
fwd_times = []
bwd_times = []
for _ in range(0, repeats):
args = list(old_args[:])
for arg in args:
if isinstance(arg, torch.Tensor):
arg.grad = None
fwd_start = time.time()
ref = fn(*args)
torch.cuda.synchronize()
fwd_end = time.time()
bwd_start = time.time()
ref.backward(gO)
torch.cuda.synchronize()
bwd_end = time.time()
fwd_times.append(fwd_end - fwd_start)
bwd_times.append(bwd_end - bwd_start)
avg_fwd = round(sum(fwd_times) / repeats * 10 ** 6, 2)
avg_bwd = round(sum(bwd_times) / repeats * 10 ** 6, 2)
avg_total = round(avg_fwd + avg_bwd, 2)
print(f"Forward = {avg_fwd}")
print(f"Backward = {avg_bwd}")
print("################################################")
print(f"#### Manual Timer for {string_id} ends #########")
print("################################################\n\n\n")
|