1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <ATen/ATen.h>
#include "minpybind.h"
#ifdef _WIN32
#include <intrin.h>
// https://stackoverflow.com/questions/355967/how-to-use-msvc-intrinsics-to-get-the-equivalent-of-this-gcc-code
inline unsigned int __builtin_clz(unsigned int x) {
unsigned long r = 0;
_BitScanReverse(&r, x);
return (31 - r);
}
#endif
inline int round2min8(int num) {
int nzeros = __builtin_clz((num - 1)|4);
return 1 << (32 - nzeros);
}
struct Arena;
template<typename T>
struct OwnedSlice;
template<typename T>
struct Slice {
Slice()
: begin_(nullptr), size_(0), capacity_(0) {}
template<typename... Args>
Slice(Arena& arena, Args&&... args);
T* begin() const {
return begin_;
}
T* end() const {
return begin_ + size_;
}
int size() const {
return size_;
}
int capacity() const {
return capacity_;
}
T& back(int i=-1) {
return begin_[size_ + i];
}
T& operator[](int i) const {
return begin_[i];
}
c10::optional<int> index(const T& value) {
for (int i : enumerate()) {
if (begin_[i] == value) {
return i;
}
}
return c10::nullopt;
}
bool contains(const T& value) {
return index(value).has_value();
}
void insert(Arena& arena, Slice where, Slice to_insert);
void insert(Arena& arena, Slice where, T v) {
return insert(arena, where, Slice(&v, &v + 1));
}
void insert(Arena& arena, int where, T v) {
return insert(arena, slice(where, where), v);
}
void append(Arena& arena, T value);
void extend(Arena& arena, Slice to_insert);
void extend(Arena& arena, const T* begin, const T* end) {
return extend(arena, Slice<T>((T*)begin, (T*)end));
}
bool remove(Arena& A, T value) {
auto idx = index(value);
if (idx) {
insert(A, slice(*idx, *idx + 1), Slice());
}
return idx.has_value();
}
Slice slice(int begin) {
return slice(begin, size_);
}
Slice slice(int begin, int end) {
if (begin < 0) {
begin += size_;
}
if (end < 0) {
end += size_;
}
Slice result;
result.begin_ = begin_ + begin;
result.size_ = end - begin;
result.capacity_ = result.size_;
return result;
}
bool inside(Slice where) {
return begin() <= where.begin() && where.end() <= end();
}
irange enumerate() const {
return irange(size_);
}
irange reversed_enumerate() const {
return irange(size_ - 1, -1, -1);
}
bool operator==(const Slice<T>& rhs) const {
if (size() != rhs.size()) {
return false;
}
return std::equal(begin(), end(), rhs.begin());
}
Slice(T* begin, T* end)
: begin_(begin), size_(end - begin), capacity_(size_) {}
protected:
static int _length(const T& t) {
return 1;
}
static int _length(Slice t) {
return t.size_;
}
static T* _insert(T*& dst, T t) {
*dst = std::move(t);
return ++dst;
}
static T* _insert(T*& dst, Slice t) {
std::memcpy(dst, t.begin_, sizeof(T)*t.size_);
dst += t.size_;
return dst;
}
T* begin_;
int size_;
int capacity_;
friend struct OwnedSlice<T>;
};
template<typename T>
struct OwnedSlice {
typedef void (*deleter_t)(Slice<T>);
static void _no_delete(Slice<T>) {}
OwnedSlice()
: deleter_(_no_delete) {}
OwnedSlice(const OwnedSlice&) = delete;
OwnedSlice& operator=(const OwnedSlice&) = delete;
~OwnedSlice() {
deleter_(slice_);
if (slice_.size_ > 8) {
delete [] slice_.begin_;
}
}
void set(Slice<T> to_own, deleter_t deleter = _no_delete) {
slice_.size_ = slice_.capacity_ = to_own.size();
slice_.begin_ = (slice_.size_ > 8) ? new T[slice_.size_] : &small_buf[0];
std::memcpy(slice_.begin_, to_own.begin(), slice_.size_ * sizeof(T));
deleter_ = deleter;
}
Slice<T> slice() const {
return slice_;
}
private:
Slice<T> slice_;
deleter_t deleter_;
T small_buf[8];
};
template<typename T>
inline std::ostream& operator<<(std::ostream& s, const Slice<T>& v) {
s << "[";
for (int i : v.enumerate()) {
if (i > 0) {
s << ", ";
}
s << v[i];
}
s << "]";
return s;
}
struct TensorRef {
TensorRef()
: impl_(nullptr){}
TensorRef(const at::Tensor& t)
: impl_(t.unsafeGetTensorImpl()) {}
const at::Tensor& operator*() const {
return *(at::Tensor*)this;
}
at::Tensor* operator->() const {
return (at::Tensor*)this;
}
operator bool() const {
return impl_ != nullptr;
}
private:
at::TensorImpl* impl_;
};
constexpr int ARENA_MAX_SIZE = 4096;
constexpr int ALIGNMENT = 8;
struct Arena {
Arena()
: allocated_(0) {}
template<typename T>
T* allocate(int n) {
if (!n) {
return nullptr;
}
int to_allocate = sizeof(T)*n;
int to_allocate_rounded = ALIGNMENT * ((to_allocate - 1) / ALIGNMENT + 1);
T* result = (T*) &buffer_[allocated_];
allocated_ += to_allocate_rounded;
AT_ASSERT(allocated_ <= ARENA_MAX_SIZE);
return result;
}
TensorRef autorelease(at::Tensor s) {
auto ref = TensorRef(s);
s.unsafeReleaseTensorImpl();
ar_tensors_.append(*this, ref);
return ref;
}
py::handle autorelease(py::object obj) {
ar_objects_.append(*this, obj);
obj.release();
return ar_objects_.back();
}
~Arena() {
for(TensorRef t: ar_tensors_) {
c10::intrusive_ptr<at::TensorImpl, at::UndefinedTensorImpl>::reclaim(t->unsafeGetTensorImpl());
}
for(py::handle h: ar_objects_) {
py::object::steal(h);
}
}
private:
int64_t allocated_;
char buffer_[ARENA_MAX_SIZE];
Slice<TensorRef> ar_tensors_;
Slice<py::handle> ar_objects_;
};
template<typename T>
inline void Slice<T>::insert(Arena& arena, Slice where, Slice to_insert) {
AT_ASSERT(inside(where));
Slice result = *this;
/// b------sb---se-----e, 0----n
T* body_dest = where.begin();
if (where.size() != to_insert.size()) {
int new_size = size() - where.size() + to_insert.size();
T* tail_dest = where.begin() + to_insert.size();
if (new_size >= capacity_) {
int new_capacity = new_size ? round2min8(new_size) : 0;
result.capacity_ = new_capacity;
result.begin_ = arena.allocate<T>(new_capacity);
body_dest = result.begin_ + (where.begin() - begin());
tail_dest = body_dest + to_insert.size();
//std::memcpy(result.begin_, begin_, sizeof(T)*(where.begin() - begin()));
std::copy(begin_, begin_ + (where.begin() - begin()), result.begin_);
}
std::memmove(tail_dest, where.end(), sizeof(T)*(end() - where.end()));
result.size_ = new_size;
}
//std::memcpy(body_dest, to_insert.begin(), sizeof(T)*to_insert.size());
std::copy(to_insert.begin(), to_insert.end(), body_dest);
*this = result;
}
template<typename T>
inline void Slice<T>::append(Arena& arena, T value) {
Slice result = *this;
if (size_ == capacity_) {
int new_size = size_ ? round2min8(size_)*2 : 8;
T* n = arena.allocate<T>(new_size);
//memcpy(n, begin_, size_*sizeof(T));
std::copy(begin_, begin_ + size_, n);
result.begin_ = n;
result.capacity_ = new_size;
}
result[result.size_++] = std::move(value);
*this = result;
}
template<typename T>
inline void Slice<T>::extend(Arena& arena, Slice<T> rhs) {
Slice result = *this;
result.size_ = size_ + rhs.size();
if (result.size_ > capacity_) {
int new_size = round2min8(result.size_);
T* n = arena.allocate<T>(new_size);
//memcpy(n, begin_, size_*sizeof(T));
std::copy(begin_, begin_+size_, n);
result.begin_ = n;
result.capacity_ = new_size;
}
//memcpy(result.begin_ + size_, rhs.begin(), sizeof(T)*rhs.size());
std::copy(rhs.begin(), rhs.end(), result.begin_ + size_);
*this = result;
}
template<typename T>
template<typename... Args>
Slice<T>::Slice(Arena& arena, Args&&... args) {
int lens[] = {_length(args)...};
size_ = 0;
for (auto i : lens) {
size_ += i;
}
capacity_ = size_ ? round2min8(size_) : 0;
begin_ = arena.allocate<T>(capacity_);
T* dst_ = begin_;
T* unused[] = {_insert(dst_, args)...};
(void) unused;
}
|