1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# These Omniglot loaders are from Jackie Loong's PyTorch MAML implementation:
# https://github.com/dragen1860/MAML-Pytorch
# https://github.com/dragen1860/MAML-Pytorch/blob/master/omniglot.py
# https://github.com/dragen1860/MAML-Pytorch/blob/master/omniglotNShot.py
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
import torch
import torch.utils.data as data
import os
import os.path
import errno
class Omniglot(data.Dataset):
urls = [
'https://github.com/brendenlake/omniglot/raw/master/python/images_background.zip',
'https://github.com/brendenlake/omniglot/raw/master/python/images_evaluation.zip'
]
raw_folder = 'raw'
processed_folder = 'processed'
training_file = 'training.pt'
test_file = 'test.pt'
'''
The items are (filename,category). The index of all the categories can be found in self.idx_classes
Args:
- root: the directory where the dataset will be stored
- transform: how to transform the input
- target_transform: how to transform the target
- download: need to download the dataset
'''
def __init__(self, root, transform=None, target_transform=None,
download=False):
self.root = root
self.transform = transform
self.target_transform = target_transform
if not self._check_exists():
if download:
self.download()
else:
raise RuntimeError('Dataset not found.' + ' You can use download=True to download it')
self.all_items = find_classes(os.path.join(self.root, self.processed_folder))
self.idx_classes = index_classes(self.all_items)
def __getitem__(self, index):
filename = self.all_items[index][0]
img = str.join('/', [self.all_items[index][2], filename])
target = self.idx_classes[self.all_items[index][1]]
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.all_items)
def _check_exists(self):
return os.path.exists(os.path.join(self.root, self.processed_folder, "images_evaluation")) and \
os.path.exists(os.path.join(self.root, self.processed_folder, "images_background"))
def download(self):
from six.moves import urllib
import zipfile
if self._check_exists():
return
# download files
try:
os.makedirs(os.path.join(self.root, self.raw_folder))
os.makedirs(os.path.join(self.root, self.processed_folder))
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
for url in self.urls:
print('== Downloading ' + url)
data = urllib.request.urlopen(url)
filename = url.rpartition('/')[2]
file_path = os.path.join(self.root, self.raw_folder, filename)
with open(file_path, 'wb') as f:
f.write(data.read())
file_processed = os.path.join(self.root, self.processed_folder)
print("== Unzip from " + file_path + " to " + file_processed)
zip_ref = zipfile.ZipFile(file_path, 'r')
zip_ref.extractall(file_processed)
zip_ref.close()
print("Download finished.")
def find_classes(root_dir):
retour = []
for (root, dirs, files) in os.walk(root_dir):
for f in files:
if (f.endswith("png")):
r = root.split('/')
lr = len(r)
retour.append((f, r[lr - 2] + "/" + r[lr - 1], root))
print("== Found %d items " % len(retour))
return retour
def index_classes(items):
idx = {}
for i in items:
if i[1] not in idx:
idx[i[1]] = len(idx)
print("== Found %d classes" % len(idx))
return idx
class OmniglotNShot:
def __init__(self, root, batchsz, n_way, k_shot, k_query, imgsz, device=None):
"""
Different from mnistNShot, the
:param root:
:param batchsz: task num
:param n_way:
:param k_shot:
:param k_qry:
:param imgsz:
"""
self.resize = imgsz
self.device = device
if not os.path.isfile(os.path.join(root, 'omniglot.npy')):
# if root/data.npy does not exist, just download it
self.x = Omniglot(
root, download=True,
transform=transforms.Compose(
[lambda x: Image.open(x).convert('L'),
lambda x: x.resize((imgsz, imgsz)),
lambda x: np.reshape(x, (imgsz, imgsz, 1)),
lambda x: np.transpose(x, [2, 0, 1]),
lambda x: x / 255.]),
)
temp = {} # {label:img1, img2..., 20 imgs, label2: img1, img2,... in total, 1623 label}
for (img, label) in self.x:
if label in temp.keys():
temp[label].append(img)
else:
temp[label] = [img]
self.x = []
for label, imgs in temp.items(): # labels info deserted , each label contains 20imgs
self.x.append(np.array(imgs))
# as different class may have different number of imgs
self.x = np.array(self.x).astype(np.float) # [[20 imgs],..., 1623 classes in total]
# each character contains 20 imgs
print('data shape:', self.x.shape) # [1623, 20, 84, 84, 1]
temp = [] # Free memory
# save all dataset into npy file.
np.save(os.path.join(root, 'omniglot.npy'), self.x)
print('write into omniglot.npy.')
else:
# if data.npy exists, just load it.
self.x = np.load(os.path.join(root, 'omniglot.npy'))
print('load from omniglot.npy.')
# [1623, 20, 84, 84, 1]
# TODO: can not shuffle here, we must keep training and test set distinct!
self.x_train, self.x_test = self.x[:1200], self.x[1200:]
# self.normalization()
self.batchsz = batchsz
self.n_cls = self.x.shape[0] # 1623
self.n_way = n_way # n way
self.k_shot = k_shot # k shot
self.k_query = k_query # k query
assert (k_shot + k_query) <= 20
# save pointer of current read batch in total cache
self.indexes = {"train": 0, "test": 0}
self.datasets = {"train": self.x_train, "test": self.x_test} # original data cached
print("DB: train", self.x_train.shape, "test", self.x_test.shape)
self.datasets_cache = {"train": self.load_data_cache(self.datasets["train"]), # current epoch data cached
"test": self.load_data_cache(self.datasets["test"])}
def normalization(self):
"""
Normalizes our data, to have a mean of 0 and sdt of 1
"""
self.mean = np.mean(self.x_train)
self.std = np.std(self.x_train)
self.max = np.max(self.x_train)
self.min = np.min(self.x_train)
# print("before norm:", "mean", self.mean, "max", self.max, "min", self.min, "std", self.std)
self.x_train = (self.x_train - self.mean) / self.std
self.x_test = (self.x_test - self.mean) / self.std
self.mean = np.mean(self.x_train)
self.std = np.std(self.x_train)
self.max = np.max(self.x_train)
self.min = np.min(self.x_train)
# print("after norm:", "mean", self.mean, "max", self.max, "min", self.min, "std", self.std)
def load_data_cache(self, data_pack):
"""
Collects several batches data for N-shot learning
:param data_pack: [cls_num, 20, 84, 84, 1]
:return: A list with [support_set_x, support_set_y, target_x, target_y] ready to be fed to our networks
"""
# take 5 way 1 shot as example: 5 * 1
setsz = self.k_shot * self.n_way
querysz = self.k_query * self.n_way
data_cache = []
# print('preload next 50 caches of batchsz of batch.')
for sample in range(10): # num of episodes
x_spts, y_spts, x_qrys, y_qrys = [], [], [], []
for i in range(self.batchsz): # one batch means one set
x_spt, y_spt, x_qry, y_qry = [], [], [], []
selected_cls = np.random.choice(data_pack.shape[0], self.n_way, False)
for j, cur_class in enumerate(selected_cls):
selected_img = np.random.choice(20, self.k_shot + self.k_query, False)
# meta-training and meta-test
x_spt.append(data_pack[cur_class][selected_img[:self.k_shot]])
x_qry.append(data_pack[cur_class][selected_img[self.k_shot:]])
y_spt.append([j for _ in range(self.k_shot)])
y_qry.append([j for _ in range(self.k_query)])
# shuffle inside a batch
perm = np.random.permutation(self.n_way * self.k_shot)
x_spt = np.array(x_spt).reshape(self.n_way * self.k_shot, 1, self.resize, self.resize)[perm]
y_spt = np.array(y_spt).reshape(self.n_way * self.k_shot)[perm]
perm = np.random.permutation(self.n_way * self.k_query)
x_qry = np.array(x_qry).reshape(self.n_way * self.k_query, 1, self.resize, self.resize)[perm]
y_qry = np.array(y_qry).reshape(self.n_way * self.k_query)[perm]
# append [sptsz, 1, 84, 84] => [b, setsz, 1, 84, 84]
x_spts.append(x_spt)
y_spts.append(y_spt)
x_qrys.append(x_qry)
y_qrys.append(y_qry)
# [b, setsz, 1, 84, 84]
x_spts = np.array(x_spts).astype(np.float32).reshape(self.batchsz, setsz, 1, self.resize, self.resize)
y_spts = np.array(y_spts).astype(np.int).reshape(self.batchsz, setsz)
# [b, qrysz, 1, 84, 84]
x_qrys = np.array(x_qrys).astype(np.float32).reshape(self.batchsz, querysz, 1, self.resize, self.resize)
y_qrys = np.array(y_qrys).astype(np.int).reshape(self.batchsz, querysz)
x_spts, y_spts, x_qrys, y_qrys = [
torch.from_numpy(z).to(self.device) for z in
[x_spts, y_spts, x_qrys, y_qrys]
]
data_cache.append([x_spts, y_spts, x_qrys, y_qrys])
return data_cache
def next(self, mode='train'):
"""
Gets next batch from the dataset with name.
:param mode: The name of the splitting (one of "train", "val", "test")
:return:
"""
# update cache if indexes is larger cached num
if self.indexes[mode] >= len(self.datasets_cache[mode]):
self.indexes[mode] = 0
self.datasets_cache[mode] = self.load_data_cache(self.datasets[mode])
next_batch = self.datasets_cache[mode][self.indexes[mode]]
self.indexes[mode] += 1
return next_batch
|