1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
import yaml
import csv
import torch
from collections import defaultdict
def get_ops_for_key(key):
# Needs modified PyTorch C++ code to work
if key is None:
ops = torch._C._dispatch_get_registrations_for_dispatch_key()
else:
ops = torch._C._dispatch_get_registrations_for_dispatch_key(key)
cleaned_ops = []
for i in ops:
if 'aten::' not in i:
continue
cleaned_ops.append(i[6:].strip())
return set(cleaned_ops)
def gen_data(special_op_lists, analysis_name):
all_ops = get_ops_for_key(None)
composite_ops = get_ops_for_key('CompositeImplicitAutograd')
noncomposite_ops = all_ops - composite_ops
ops = yaml.load(open('../../aten/src/ATen/native/native_functions.yaml', 'r').read(), Loader=yaml.CLoader)
annotated_ops = {a.strip(): b.strip() for a, b in list(csv.reader(open('annotated_ops')))}
from collections import defaultdict
uniq_ops = []
uniq_names = set()
overload_types = defaultdict(list)
cnt = 0
for op in ops:
func_str = op['func']
name = func_str[:func_str.index('(')]
if '.' in name:
uniq_name = name[:name.index('.')]
overload_types[name[name.index('.') + 1:]].append(name)
else:
uniq_name = name
op['name'] = uniq_name
full_name = func_str[:func_str.index('(')]
op['full_name'] = full_name
ret_type = func_str[func_str.index('->') + 3:]
op['ret_type'] = ret_type
cnt += 1
if uniq_name in uniq_names:
continue
uniq_names.add(uniq_name)
uniq_ops.append(op)
def annotate_ops(ops, is_unique):
categorization = defaultdict(int)
for op in ops:
if op['name'][-1] == '_':
categorization['inplace'] += 1
op['meta'] = 'inplace'
continue
if not is_unique and 'a!' in op['func'].lower():
categorization['out'] += 1
op['meta'] = 'out'
continue
if 'conv' in op['name']:
categorization['conv'] += 1
op['meta'] = 'conv'
continue
if 'pool' in op['name']:
categorization['pool'] += 1
op['meta'] = 'pool'
continue
if 'backward' in op['name']:
categorization['backward'] += 1
op['meta'] = 'backward'
continue
if op['name'][0] == '_' and op['name'][1] != '_':
categorization['private'] += 1
op['meta'] = 'private'
continue
if 'batch_norm' in op['name']:
categorization['batch_norm'] += 1
op['meta'] = 'batch_norm'
continue
if 'Tensor' not in op['func'] or 'Tensor' not in op['ret_type']:
categorization['non_tensor'] += 1
op['meta'] = 'non_tensor'
continue
if 'cudnn' in op['name'] or 'mkldnn' in op['name'] or 'miopen' in op['name'] or \
'native' in op['name'] or 'thnn' in op['name'] or 'slow' in op['name']:
categorization['backend'] += 1
op['meta'] = 'backend'
continue
if op['name'] in annotated_ops:
categorization['core'] += 1
op['meta'] = 'core ' + annotated_ops[op['name']]
continue
categorization['core'] += 1
op['meta'] = 'core unknown'
return categorization
annotate_ops(ops, is_unique=False)
with open(f"{analysis_name}", 'w') as f:
for op in ops:
info = [
op['full_name'], op['meta'], not (op['full_name'] in noncomposite_ops)
] + [check(op) for check in special_op_lists]
f.write(','.join([str(i) for i in info]) + '\n')
def name_check(lst):
return lambda x: x['name'] in lst
def full_name_check(lst):
return lambda x: x['full_name'] in lst
# Generates batching rule data
gen_data([full_name_check(get_ops_for_key('FuncTorchBatched'))], 'vmap.txt')
def remove_suffix(input_string, suffix):
if suffix and input_string.endswith(suffix):
return input_string[:-len(suffix)]
return input_string
def remove_prefix(input_string, prefix):
if prefix and input_string.startswith(prefix):
return input_string[len(prefix):]
return input_string
if True:
with open('run_ops.txt', 'r') as f:
opinfo_ops = [remove_suffix(i.strip(), '.default') for i in f.readlines()]
with open('count_ops.txt', 'r') as f:
opinfo_counts = [i.strip() for i in f.readlines()]
opinfo_counts = defaultdict(int, {k: v for k, v in zip(opinfo_ops, opinfo_counts)})
def count_fn(x):
return opinfo_counts[x['full_name']]
with open('run_decompositions.txt', 'r') as f:
decomposed_ops = [remove_suffix(i.strip(), '.default') for i in f.readlines()]
with open('public_api', 'r') as f:
ref_api = [i.strip() for i in f.readlines()]
def has_ref_impl(x):
name = x['name']
for prefix in ["linalg_", "special_"]:
name = remove_prefix(name, prefix)
prefixes = ['nn.functional', 'fft', 'special', 'linalg']
return any(f"{prefix}.{name}" in ref_api for prefix in prefixes) or name in ref_api
gen_data([full_name_check(opinfo_ops), full_name_check(decomposed_ops), count_fn, has_ref_impl], 'decompositions.txt')
|