1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from functorch.dim import Tensor, Dim, dims, dimlists, stack, DimensionBindError, DimList
from attn_ft import BertSelfAttention as BertSelfAttentionA, Linear
from attn_positional import BertSelfAttention as BertSelfAttentionB
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_CUDA
from unittest import skip, skipIf
import torch
import gc
from functorch._C import dim as _C
try:
from torchvision.models import resnet18
except ImportError:
resnet18 = None
_test_c, _parse_test, _set_pointwise_optimize = _C._test_c, _C._parse_test, _C._set_pointwise_optimize
from contextlib import contextmanager
from time import perf_counter
measure_perf = False
if measure_perf:
from torchdim.magic_trace import magic_trace
else:
@contextmanager
def magic_trace(*args, **kwargs):
yield
@contextmanager
def measure(what):
b = perf_counter()
yield
e = perf_counter()
print(f"{what}: {e - b:.20f} seconds")
def triu(A):
i, j = dims()
a = A[i, j]
zero = torch.tensor(0, dtype=torch.float) # XXX - torch.where is janky...
return torch.where(i <= j, a, zero).order(i, j)
def gpu_time(lmb, name, r=100):
b = torch.cuda.Event(enable_timing=True)
e = torch.cuda.Event(enable_timing=True)
# with magic_trace(name + ".fxt"):
for _ in range(r):
lmb()
b.record()
for _ in range(r):
lmb()
e.record()
e.synchronize()
elapsed = b.elapsed_time(e)
# with torch.profiler.profile(schedule=torch.profiler.schedule(
# wait=0,
# warmup=1,
# active=2), on_trace_ready=tensorboard_trace_handler(name), with_stack=True) as profiler:
# for _ in range(3):
# lmb()
# profiler.step()
print(name, elapsed / r)
return elapsed / r
class TestMin(TestCase):
def setUp(self):
gc.disable()
gc.collect()
self.interesting = set()
for o in gc.get_objects():
if isinstance(o, (torch.Tensor, Dim, Tensor, DimList)):
self.interesting.add(id(o))
if 'cuda' in self._testMethodName:
self.mem_allocated = torch.cuda.memory_allocated()
def tearDown(self):
interesting = []
for o in gc.get_objects():
if isinstance(o, (torch.Tensor, Dim, Tensor, DimList)) and id(o) not in self.interesting:
interesting.append(o)
extra_memory = 0
if 'cuda' in self._testMethodName:
extra_memory += torch.cuda.memory_allocated() - self.mem_allocated
# nolevels = _n_levels_in_use() == 0
if extra_memory != 0 or len(interesting) != 0:
import refcycle
refcycle.garbage().export_image('garbage.pdf')
gc.collect()
# assert nolevels, f"cleanup failed? {_n_levels_in_use()}"
assert extra_memory == 0, f'extra cuda memory left allocated: {extra_memory}'
assert len(interesting) == 0, \
f'extra torch.Tensor, Dim, or Tensor left allocated: {len(interesting)} objects of types:' \
f' { [type(t) for t in interesting] }'
def test_manual_stuff(self):
A_ = torch.rand(3, 4)
B_ = torch.rand(4, 5)
i, j, k = dims()
A = A_[i, k]
B = B_[k, j]
C = (A.expand(j) * B.expand(i)).sum(k)
self.assertTrue(torch.allclose(C.order(i, j), torch.mm(A_, B_)))
self.assertTrue(torch.allclose(torch.triu(A_, 0), triu(A_)))
D_ = torch.randint(0, 3, (6,))
d = dims()
D = D_[d]
A.index([i], [D]).order(k, d)
def attn(self, batch_size=1, sequence_length=4, hidden_size=6, num_attention_heads=3, linear=Linear, device=None, time=False):
def maybe_to(x):
return x if device is None else x.to(device)
attention_probs_dropout_prob = 0.
A = maybe_to(BertSelfAttentionA(hidden_size, num_attention_heads, attention_probs_dropout_prob, linear=linear))
B = maybe_to(BertSelfAttentionB(hidden_size, num_attention_heads, attention_probs_dropout_prob))
A.load_state_dict(B.state_dict())
hidden_state = maybe_to(torch.rand(batch_size, sequence_length, hidden_size))
b_out = B(hidden_state)
a_out = A(hidden_state)
self.assertTrue(torch.allclose(a_out, b_out)) # why does a simple matmul not do the right thing?
if time:
gpu_time(lambda: B(hidden_state), "positional", r=3)
gpu_time(lambda: A(hidden_state), "first_class", r=3)
for approach in ('relative_key', 'relative_key_query'):
A = maybe_to(BertSelfAttentionA(hidden_size, num_attention_heads,
attention_probs_dropout_prob, approach, sequence_length, linear=linear))
B = maybe_to(BertSelfAttentionB(hidden_size, num_attention_heads,
attention_probs_dropout_prob, approach, sequence_length))
A.load_state_dict(B.state_dict())
hidden_state = maybe_to(torch.rand(batch_size, sequence_length, hidden_size))
b_out = B(hidden_state)
a_out = A(hidden_state)
self.assertTrue(torch.allclose(a_out, b_out))
if time:
gpu_time(lambda: B(hidden_state), "positional", r=3)
gpu_time(lambda: A(hidden_state), "first_class", r=3)
A = maybe_to(BertSelfAttentionA(hidden_size, num_attention_heads,
attention_probs_dropout_prob, None, None, linear=linear))
B = maybe_to(BertSelfAttentionB(hidden_size, num_attention_heads,
attention_probs_dropout_prob, None, None))
A.load_state_dict(B.state_dict())
hidden_state = maybe_to(torch.rand(batch_size, sequence_length, hidden_size))
past_key_value = (maybe_to(torch.rand(batch_size, num_attention_heads,
sequence_length, hidden_size // num_attention_heads)),
maybe_to(torch.rand(batch_size, num_attention_heads,
sequence_length, hidden_size // num_attention_heads)))
b_out = B(hidden_state, past_key_value=past_key_value)
a_out = A(hidden_state, past_key_value=past_key_value)
self.assertTrue(torch.allclose(a_out, b_out))
if time:
gpu_time(lambda: B(hidden_state), "positional", r=3)
gpu_time(lambda: A(hidden_state), "first_class", r=3)
def test_attn(self):
self.attn()
def test_inplace(self):
# some embeddings table
embeddings = torch.zeros(10, 3)
# some sparse updates to the embeddings
indices = torch.arange(2) + 1
values = torch.rand(2, 3)
i, n, f = dims()
embeddings[indices[i], f] += values[i, f]
@skipIf(not TEST_CUDA, "no CUDA")
def test_attn_cuda(self):
# size from the BERT paper, 90% pretraining of sequence length 128
self.attn(batch_size=256, hidden_size=768, sequence_length=128,
num_attention_heads=12, device='cuda', time=measure_perf, linear=torch.nn.Linear)
def test_stack(self):
i, j, d = dims()
A = torch.rand(4, 5)
r = stack([A[i, j]], d, j)
# a, b = r.unbind(d)
# self.assertTrue(torch.allclose(a.order(i, j), i.expand(j).order(i, j)))
# self.assertTrue(torch.allclose(b.order(i, j), j.expand(i).order(i, j)))
def test_max(self):
ap = torch.rand(2, 3, 2)
i, j, k = dims()
a = ap[i, j, k]
r, i0 = a.max(dim=k)
self.assertTrue(torch.allclose(r.order(i, j), ap.max(2)[0]))
def test_mm(self):
i, j, k, q = dims()
a = torch.rand(3, 4)
b = torch.rand(4, 5)
a_ = a[i, k]
b_ = b[k, j]
q.size = 1
r = (a_.expand(j, q) * b_.expand(i, q)).sum(k).order(q, i, j)
# r = (a_*b_).sum(k).order(q, i, j)
# print(r)
# print(a @ b)
def test_with_dims_split(self):
a = torch.arange(3 * 12).view(3, 12)
i, j, k = dims()
k.size = 4
r = a[i, [j, k]]
x = r.order(i, [j, k])
self.assertTrue(torch.allclose(a, x))
def test_hello(self):
A = torch.rand(3, 4)
B = torch.rand(4, 5)
i, j, k = dims()
# r = A[i]*4
r = (A[i, k] * B[k, j]).sum(k).order(i, j)
assert torch.allclose(r, A @ B)
assert A.sum() == A[i].sum((0, i))
assert A.sum() == A[i].sum((-1, i))
assert torch.allclose(A.sum(), A[i].sum(0, keepdim=True).sum((0, i)))
assert torch.allclose(A[i].std(i, True), A.std(0, True))
assert torch.allclose(A[i, k].max(i)[0].order(k), A.max(0)[0])
assert torch.allclose(A.sort(1)[0], A[i, k].sort(k)[0].order(i, k))
# XXX - chunk changes the size of a dimension, has to take a new dimension...
# assert torch.allclose(A.chunk(2,1)[0], A[i, k].chunk(2, k)[0].order(i, k))
assert torch.allclose(A[i].renorm(1, i, 7).order(i), A.renorm(1, 0, 7))
kk = dims()
# assert torch.allclose( torch.stack([A, A], 1), stack([A[i,k], A[i, k]], kk, k).order(i, kk, k))
k2 = dims()
# r = cat((A[i, k], A[i,k]), k, k2)
# assert torch.allclose(torch.cat([A, A], 1), r.order(i, k2))
# assert k2.size == 2*k.size
assert torch.allclose(A.expand(5, -1, -1), A[i, k].expand(j).order(j, i, k))
z = dims()
C = torch.arange(2)
assert torch.allclose(A[:, 0:2], A[i, k].index(k, C[z]).order(i, z))
o, l = dims()
o.size = 2
r = A[i, k].index(k, (o, l))
assert torch.allclose(r.order(i, o, l), A.view(-1, 2, 2))
rr = r.index((o, l), k)
assert torch.allclose(A, rr.order(i, k))
r = i + k - 1
r2 = torch.arange(3)[:, None] + torch.arange(4)[None, :] - 1
assert torch.allclose(r.order(i, k), r2)
# test with ...
assert torch.allclose(A.T, A[..., k].order(k))
# test with dimlist
a_, b_ = dimlists()
assert torch.allclose(A[i, a_].order(*a_, i), A.T)
# test with one bound dimlist
assert torch.allclose(A[:, a_].order(*a_), A.T)
# test with a dimlist that will end up empty
assert torch.allclose(A[i, b_, k].order(i, k, *b_), A)
# test with too few things
(A[i] + i)
assert torch.allclose((A[i] + i).order(i), A + torch.arange(3)[:, None])
# test with too many elements
try:
A[1, ..., 1, 1]
raise NotImplementedError()
except IndexError:
pass
c, d = dims()
c.size = 2
assert torch.allclose(A[i, [c, d]].order(i, c, d), A.view(3, 2, 2))
assert torch.allclose(A[c + 1, c + 0].order(c), A[torch.arange(2) + 1, torch.arange(2)])
try:
A[..., 3, ...]
raise NotImplementedError()
except DimensionBindError:
pass
C = torch.rand(4, 7)
c_, x, y, z = dims()
a, b, c = C.split((3, 3, 1), dim=1)
s = dims()
ref = C.split((3, 3, 1), dim=1)
t = C[s, c_].split((x, y, z), dim=c_)
for a, b, d in zip(ref, t, (x, y, z)):
assert torch.allclose(a, b.order(s, d))
D = torch.rand(3, 4, 5)
assert torch.allclose(D.transpose(0, 1).flatten(1, 2), D[i, k, j].order((i, j)).order(k))
r = [id(x) for x in torch.rand_like(A[i, k]).dims]
assert id(i) in r and id(k) in r
r = [id(x) for x in torch.nn.functional.dropout(A[i, k]).dims]
assert id(i) in r and id(k) in r
def test_simple(self):
i, j, k = dims()
x = torch.rand(3, 4)
z = x[i, j]
(z + z + z + z)
(z.order(i, j))
def test_mm_fuse(self):
i, j, k = dims()
A = torch.rand(3, 4)
B = torch.rand(4, 5)
C = (A[i, k] * B[k, j]).sum(k).order(i, j)
assert torch.allclose(C, A @ B)
def test_time_mm_fuse(self):
i, j, k = dims()
A = torch.rand(3, 4)
B = torch.rand(4, 5)
for _ in range(10):
r0 = A @ B
for _ in range(10):
a = A[i, k]
b = B[k, j]
r1 = (a * b).sum(k)
with measure('pp'):
for _ in range(10000):
A @ B
# magic_trace_stop_indicator()
with measure('fc'):
for _ in range(10000):
(A[i, k] * B[k, j]).sum(k).order(i, j)
with magic_trace('f.fxt'):
for _ in range(10000):
(A[i, k] * B[k, j]).sum(k).order(i, j)
with magic_trace('p.fxt'):
for _ in range(10000):
A @ B
# magic_trace_stop_indicator()
assert torch.allclose(r1.order(i, j), r0)
def test_compare_dims(self):
i, j = dims()
i.size = 3
j.size = 4
(i < j)
def test_c(self):
_test_c()
def test_seg(self):
A = torch.rand(3, 4)
i, k = dims()
i.size = 4
k.size = 3
r = i + k - 1
def test_expand(self):
A = torch.rand(3, 4)
i = dims()
assert list(A[i].expand(2, 4).order(i).size()) == [3, 2, 4]
def test_parse(self):
self.assertEqual(("x", None, None, None), _parse_test(1, 0, "x"))
self.assertEqual(("x", None, "y", None), _parse_test(1, 0, "x", c="y"))
self.assertEqual(("x", None, "y", "z"), _parse_test(1, 0, "x", d="z", c="y"))
self.assertEqual(("x", "4", None, None), _parse_test(2, 0, "x", b="4"))
self.assertEqual(("x", "y", "z", "q"), _parse_test(2, 0, "x", "y", "z", "q"))
with self.assertRaises(TypeError):
_parse_test(2, 0, "x", "y", "z", "q", "5")
with self.assertRaises(TypeError):
_parse_test(2, 0, "x", "y", b="y")
with self.assertRaises(TypeError):
_parse_test(2, 0, "x", c="y")
with self.assertRaises(TypeError):
_parse_test(2, 0, "x")
def test_network(self):
if resnet18 is None:
self.skipTest('no torchvision')
rn = resnet18(norm_layer=lambda x: torch.nn.BatchNorm2d(x, track_running_stats=False))
rn.train()
img = torch.rand(1, 1, 2, 3, 224, 224)
imgf = img.view(2, 3, 224, 224)
i, j = dims()
r = rn(img[i, j])
r = r.order(i, j).view(2, 1000)
r2 = rn(imgf)
assert torch.allclose(r2, r, atol=1e-06)
def test_dim_args(self):
a = dimlists()
assert isinstance(a, DimList)
a = dims()
b = dimlists()
assert isinstance(a, Dim)
assert isinstance(b, DimList)
assert str(a) == 'a'
a, b = dims(sizes=[3, 4])
assert a.size == 3
assert b.size == 4
a = dims(sizes=[3])
b = dimlists(sizes=[4])
assert len(b) == 4
a = dims()
b = dimlists(sizes=[[4, 5]])
assert b[0].size == 4
assert b[1].size == 5
def test_diag(self):
i = dims()
A = torch.rand(4, 4)
(A[i, i])
def test_softmax_split(self):
a = torch.rand(16)
g, i = dims(sizes=[2, None])
a2 = a[[i, g], ]
m_b, _ = a2.max(i)
f_b = torch.exp(a2 - m_b)
l_b = f_b.sum(i)
m, _ = m_b.max(g)
c = torch.exp(m_b - m)
f = (c * f_b).order((i, g))
l = (c * l_b).sum(g)
assert torch.allclose(f / l, torch.nn.functional.softmax(a, dim=0))
def test_index(self):
A = torch.rand(3, 4)
B = torch.rand(4, 5)
i, j, k = dims()
o, l = dims()
o.size = 2
r = A[i, k].index(k, [o, l])
assert torch.allclose(r.order(i, o, l), A.view(-1, 2, 2))
rr = r.index([o, l], k)
assert torch.allclose(A, rr.order(i, k))
z = dims()
C = torch.arange(2)
x = A[i, k].index(k, C[z]).order(i, z)
assert torch.allclose(A[:, 0:2], x)
C = torch.rand(3, 4, 5)
ik = dims()
assert torch.allclose(C.index((0, 2), ik).order(ik), C.permute(0, 2, 1).reshape(15, 4))
# failures that came up from monkey patching some operators...
def test_monkey(self):
A = torch.rand(3, 4)
A[0, 0] = 5
x = torch.randn(3, 4, 4, 4, 3)
x_clone1 = x.clone()
ia = torch.tensor([0, 2, 1])
ib = torch.tensor([0, 2, 1])
first_shape = x[:, ia, None, ib, 0].shape
x_clone1[:, ia, None, ib, 0] = torch.randn(first_shape).to(x_clone1)
x = torch.autograd.Variable(torch.tensor([]))
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
a = [z[2], z[0] + 3]
x.new(a)
# self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4])
def test_index_placement(self):
A = torch.rand(1, 2, 3, 4)
i, j = dims(sizes=[2, 4])
a = A[:, i + 0, :, j + 0]
r = a.order(i, j)
assert torch.allclose(A.permute(1, 3, 0, 2), r)
def test_order(self):
i, j = dims()
A = torch.rand(3, 4, 5)
assert torch.allclose(A[i].order(1, i), A.permute(2, 0, 1))
def test_mask(self):
a = torch.rand(5)
i, j = dims(sizes=[a.size(0), a.size(0)])
((i >= j) * a[i]).sum(j).order(i)
def test_eq(self):
i, j = dims(sizes=[3, 3])
assert (i == j).sum((i, j)) == 3
def test_dims_with_size(self):
x = dims(3)
assert len(x) == 3 and isinstance(x[0], Dim)
class Foo:
pass
y = Foo()
z, y.x, q = dims(3)
assert str(z) == "z"
assert str(y.x) == "d1"
assert str(q) == "d2"
def test_dir(self):
i, j = dims(sizes=[3, 3])
dir(i <= j)
def test_doc(self):
assert Tensor.clamp.__doc__ == torch.Tensor.clamp.__doc__
def test_embed(self):
embeddings = torch.rand(8, 32)
ids = torch.tensor([1, 0, 3, 4])
# slow but Pythonic
values_ = torch.empty(4, 32)
for batch in range(ids.size(0)):
for feature in range(embeddings.size(1)):
values_[batch, feature] = embeddings[ids[batch], feature]
# with torchdim, single indexing kernel
batch, feature = dims(2)
values = embeddings[ids[batch], feature].order(batch, feature)
assert torch.allclose(values, values_)
def test_functorch(self):
A = torch.rand(3, 4, 5)
B = torch.rand(3, 4, 5)
C = torch.rand(5, 2)
i, j = dims()
AA = torch.mm(A[i], C) # 3, 4, 2
BB = torch.mm(B[j], C) # 3, 4, 2
assert list(torch.mm(AA.T, BB).order(i, j).shape) == [3, 3, 2, 2]
skip_functorch_only = ['test_time_mm_fuse', 'test_attn_cuda']
class TestMinFunctorchOnly(TestMin):
def setUp(self):
super().setUp()
_set_pointwise_optimize(False)
def tearDown(self):
_set_pointwise_optimize(True)
super().tearDown()
for n in skip_functorch_only:
setattr(TestMinFunctorchOnly, n, skip("skip_functorch_only")(lambda self: None))
if __name__ == '__main__':
run_tests()
|