1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
# Owner(s): ["module: functorch"]
import torch
import torch.nn as nn
import torch.fx as fx
from functorch import make_fx
from torch.nn import functional as F
from functorch.compile import memory_efficient_fusion
from functorch._src.compile_utils import fx_graph_cse
from torch.testing._internal.common_utils import TestCase, run_tests
import inspect
import random
from typing import Callable
import unittest
HAS_CUDA = torch.cuda.is_available()
def _num_args(fn: Callable):
return len(inspect.signature(fn).parameters)
def gelu_bias(bias, y):
x = bias + y
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
def swish(x):
return x * torch.sigmoid(x)
def mish(x):
return x.mul(torch.tanh(F.softplus(x)))
def hard_sigmoid(x):
return (x + 3.0).clamp(min=0.0, max=6.0).div(6.0)
def hard_swish(x):
return x * (x + 3.0).clamp(min=0.0, max=6.0).div(6.0)
def hard_mish(x):
return 0.5 * x * (x + 2.0).clamp(min=0.0, max=2.0)
# todo: convert these into tests
# def group_std(x, groups: int = 32, eps: float = 1e-5, flatten: bool = False):
# B, C, H, W = x.shape
# x_dtype = x.dtype
# if flatten:
# x = x.reshape(B, groups, -1) # FIXME simpler shape causing TPU / XLA issues
# std = x.float().var(dim=2, unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype)
# else:
# x = x.reshape(B, groups, C // groups, H, W)
# std = x.float().var(dim=(2, 3, 4), unbiased=False, keepdim=True).add(eps).sqrt().to(x_dtype)
# return std.expand(x.shape).reshape(B, C, H, W)
# class EvoNorm2dS0(nn.Module):
# def __init__(self, num_features, groups=32, group_size=None, apply_act=True, eps=1e-5, **_):
# super().__init__()
# self.apply_act = apply_act # apply activation (non-linearity)
# if group_size:
# assert num_features % group_size == 0
# self.groups = num_features // group_size
# else:
# self.groups = groups
# self.eps = eps
# self.weight = nn.Parameter(torch.ones(num_features))
# self.bias = nn.Parameter(torch.zeros(num_features))
# self.v = nn.Parameter(torch.ones(num_features)) if apply_act else None
# self.reset_parameters()
# def reset_parameters(self):
# nn.init.ones_(self.weight)
# nn.init.zeros_(self.bias)
# if self.v is not None:
# nn.init.ones_(self.v)
# def forward(self, x):
# x_dtype = x.dtype
# v_shape = (1, -1, 1, 1)
# if self.v is not None:
# v = self.v.view(v_shape).to(dtype=x_dtype)
# x = x * (x * v).sigmoid() / group_std(x, self.groups, self.eps)
# return x * self.weight.view(v_shape).to(dtype=x_dtype) + self.bias.view(v_shape).to(dtype=x_dtype)
# device = "cuda"
# dtype = torch.float
# evo_norm = EvoNorm2dS0(2048)
# evo_norm_inp = [(128, 2048, 8, 8)]
def run_and_compare_activation(self, fn, inps):
with torch.jit.fuser("fuser1"):
device = "cuda"
dtype = torch.float
if isinstance(fn, nn.Module):
fn = fn.to(device=device, dtype=dtype)
ref_args = [torch.randn(shape, device=device, dtype=dtype, requires_grad=True) for shape in inps]
res_args = [i.clone().detach().requires_grad_(True) for i in ref_args]
ref = fn(*ref_args)
ref.sum().backward()
mem_optimized_fn = memory_efficient_fusion(fn)
for _ in range(5):
for i in res_args:
i.grad = None
res = mem_optimized_fn(*res_args)
res.sum().backward()
self.assertEqual(ref, res)
for ref_arg, res_arg in zip(ref_args, res_args):
self.assertEqual(ref_arg.grad, res_arg.grad)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA is unavailable")
class TestMemoryEfficientOpAuthoring(TestCase):
def test_gelu_bias(self):
run_and_compare_activation(self, gelu_bias, [(1024,), (1024,)])
def test_mish(self):
run_and_compare_activation(self, mish, [(1024,)])
def test_swish(self):
run_and_compare_activation(self, swish, [(1024,)])
def test_hard_sigmoid(self):
run_and_compare_activation(self, hard_sigmoid, [(1024,)])
def test_hard_swish(self):
run_and_compare_activation(self, hard_swish, [(1024,)])
def test_layer_norm(self):
def layer_norm(x, weight, bias):
dim = -1
eps = 1e-5
mean = torch.mean(x, dim, keepdim=True)
centered = x - mean
var = torch.sum(centered * centered, dim, keepdim=True) / x.size(-1)
rvar = 1. / torch.sqrt(var + eps)
normed = (x - mean) * rvar
return normed * weight + bias
bs = 10
ln_size = 16
layer_norm_inps = [(bs, ln_size), (ln_size,), (ln_size,)]
run_and_compare_activation(self, layer_norm, layer_norm_inps)
def test_rmsnorm(self):
class T5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the T5 style No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# layer norm should always be calculated in float32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
bs = 256
seq = 256
hidden = 1024
t5_norm = T5LayerNorm(hidden)
t5_norm_inputs = [(bs, seq, hidden)]
run_and_compare_activation(self, t5_norm, t5_norm_inputs)
# TODO - Assertion failure
# def test_hard_mish(self):
# for compiler in compilers:
# run_and_compare_activation(hard_mish, 1024)
# check if the CSE modified graph of f has delta less nodes, and do not reduce the number of nodes further on a second pass.
# delta is an integer >= -1. If delta = -1, only check if the new graph
# has less or equal number of nodes
def check(f, t, delta, check_val=True, graph_input=False):
if graph_input:
fx_g = f
else:
fx_g = make_fx(f)(t)
new_graph = fx_graph_cse(fx_g.graph)
new_g = fx.GraphModule(fx_g, new_graph)
# the number of nodes decrease/ or stay the same
old_num_nodes = len(fx_g.graph.nodes)
new_num_nodes = len(new_graph.nodes)
if delta == -1:
assert old_num_nodes >= new_num_nodes, (
f"number of nodes increased {old_num_nodes}, {new_num_nodes}")
else:
assert old_num_nodes == new_num_nodes + delta, (
f"number of nodes not the same {old_num_nodes - delta}, {new_num_nodes}\n {fx_g.graph} \n {new_graph}")
# a second pass should not reduce more nodes
pass_2_graph = fx_graph_cse(new_graph)
pass_2_num_nodes = len(pass_2_graph.nodes)
assert pass_2_num_nodes == new_num_nodes, (
f"second pass graph has less node {pass_2_num_nodes}, {new_num_nodes}\n {new_graph} \n {pass_2_graph}")
# check correctness
if check_val:
true_result = fx_g(t)
our_result = new_g(t)
if true_result is None: # both return None
assert our_result is None, f"true result is None, CSE result is {our_result}"
else: # results returned are the same
assert torch.all(true_result == our_result), (
f"results are different {true_result}, {our_result}") # check results are the same
class NoChangeTestCase(TestCase):
def test_nochange(self):
def f(x):
a = x + 1
b = x + a
a = x
d = x + a
return b + d
t = torch.randn(2, 2)
check(f, t, 0)
def test_empty(self):
def f(x):
pass
t = torch.randn(2, 2)
check(f, t, 0)
def test_rand_like(self):
def f(x):
a = torch.rand_like(x)
b = torch.rand_like(x)
return a + b
t = torch.randn(2, 2)
check(f, t, 0, check_val=False)
def test_rand_n(self):
def f(x):
a = torch.randn(4)
b = torch.randn(4)
return a + b
t = torch.randn(2, 2)
check(f, t, 0, check_val=False)
class ReduceTestCase(TestCase):
def test_immutable_list_type(self):
def f(x):
a = x.sum(dim=1)
b = x.sum(dim=1)
c = x.sum()
d = x.sum()
return a + b + c + d
t = torch.randn(2, 2)
check(f, t, 2)
def test_immutable_list_multiple_entries(self):
def f(x):
a = x.sum(dim=[0, 1])
b = x.sum(dim=[0, 1])
c = x.sum(dim=1)
d = x.sum(dim=1)
return a + b + c + d
t = torch.randn(2, 2)
check(f, t, 2)
def test_simple(self):
def f(x):
a = x.cos()
b = x.cos()
c = a + a
d = b + b
return c + d
t = torch.randn(2, 2)
check(f, t, 2)
def test_simple_2(self):
def f(x):
a = x.cos().sin()
b = x.cos().sin()
c = a + a
d = b + b
return c + d
t = torch.randn(1)
check(f, t, 3)
def test_two_args_default(self):
def f(x):
a = x.sum(dim=1)
b = x.sum(dim=1, keepdim=False)
c = x.sum(dim=1, keepdim=False)
d = x.sum(dim=1)
return a + b + c + d
t = torch.randn(2, 2)
check(f, t, 3)
def test_two_args(self):
def f(x):
a = x.sum(dim=1)
b = x.sum(dim=1, keepdim=True)
c = x.sum(dim=1, keepdim=True)
d = x.sum(dim=1)
return a + b + c + d
t = torch.randn(2, 2)
check(f, t, 2)
def test_simple_multiple_same_ops(self):
def f(x):
a = x.sum()
b = x.sum()
c = x.sum()
d = x.sum()
return a + b + c + d
t = torch.randn(2, 2)
check(f, t, 3)
def test_nested_immutable_list_type(self):
def f(x):
a = torch.cat((x, x))
b = torch.cat((x, x))
return a + b
t = torch.randn(2, 2)
check(f, t, 1)
def test_kwarg(self):
def f(x):
a = torch.ones_like(x)
b = torch.ones_like(x)
return a + b
t = torch.randn(2, 2)
check(f, t, 1)
class RandomOpTestCase(TestCase):
def test_random(self):
def f(x):
vals = [x]
ops = [torch.clone, torch.cos, torch.tanh, torch.nn.functional.gelu]
for _ in range(100):
new_val = random.choice(ops)(random.choice(vals))
vals.append(new_val)
return vals[-1]
fx_g = fx.symbolic_trace(f)
fx_g.graph.eliminate_dead_code()
fx_g.recompile()
t = torch.randn(2, 2)
for _ in range(30):
check(fx_g, t, -1, graph_input=True)
if __name__ == "__main__":
run_tests()
|