File: test_ops.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1725 lines) | stat: -rw-r--r-- 81,560 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
# Owner(s): ["module: functorch"]

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import itertools
import unittest

from torch.testing._internal.common_utils import TestCase, run_tests, is_iterable_of_tensors, IS_ARM64, parametrize
import torch
from torch import Tensor
import functools
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_device_type import ops
from torch.testing._internal.common_device_type import \
    toleranceOverride, tol
from functorch_additional_op_db import additional_op_db
from torch.testing._internal.common_methods_invocations import op_db
from common_utils import (
    get_fallback_and_vmap_exhaustive,
    generate_vmap_inputs,
    decorate,
    xfail,
    skip,
    skipOps,
    tol1,
    tol2,
    opsToleranceOverride,
    check_vmap_fallback,
    is_batch_norm_training,
    is_valid_inplace_sample_input,
    loop2,
)

from torch.testing._internal.opinfo.core import SampleInput
from torch.utils._pytree import tree_flatten, tree_unflatten, tree_map
from functorch import grad, vjp, vmap, jacrev, jacfwd
import torch.autograd.forward_ad as fwAD
from functorch._src.eager_transforms import _as_tuple, jvp
aten = torch.ops.aten


# Version of autograd.grad with some differences:
#   - pytree inputs is allowed (but leaves of the pytree have to all
#     be tensors)
#   - if an input is not used as part of derivatives, we will return a
#     zero-filled tensor for the result
def _autograd_grad(
    outputs, inputs, grad_outputs=None, retain_graph=False, create_graph=True
):
    inputs, inputs_spec = tree_flatten(inputs)
    diff_inputs = tuple(inp for inp in inputs if inp.requires_grad)
    if grad_outputs is None:
        diff_outputs = tuple(out for out in outputs if out.requires_grad)
    else:
        diff_grad_outputs = [
            (out, go) for out, go in zip(outputs, grad_outputs) if out.requires_grad
        ]
        if len(diff_grad_outputs) == 0:
            diff_outputs, grad_outputs = (), ()
        else:
            diff_outputs, grad_outputs = zip(*diff_grad_outputs)
    grad_inputs = torch.autograd.grad(
        diff_outputs,
        diff_inputs,
        grad_outputs,
        retain_graph=retain_graph,
        create_graph=create_graph,
        allow_unused=True,
    )
    result = []
    grad_inputs_iter = iter(grad_inputs)
    for inp in inputs:
        if inp.requires_grad:
            grad_input = next(grad_inputs_iter)
            if grad_input is None:
                result.append(torch.zeros_like(inp))
            else:
                result.append(grad_input)
        else:
            result.append(torch.zeros_like(inp))
    return tree_unflatten(result, inputs_spec)


def diff_arg(arg, requires_grad=True):
    def is_differentiable_arg(arg):
        if requires_grad:
            return arg.requires_grad
        else:
            return arg.is_floating_point() or arg.is_complex()
    if is_iterable_of_tensors(arg):
        if all([is_differentiable_arg(a) for a in arg]):
            return True
        if all([not is_differentiable_arg(a) for a in arg]):
            return False
        raise RuntimeError("NYI: The test runner can't handle this")
    return isinstance(arg, Tensor) and is_differentiable_arg(arg)


# Given f, returns an f' such that:
# - f' takes only positional arguments
# - All arguments to f' are floating-point Tensors
# - All outputs of f' are floating-point Tensors
def normalize_op_input_output2(f, args, kwargs, output_process_fn_grad=None, requires_grad=True):
    flat_args, args_spec = tree_flatten(args)
    diff_argnums = tuple(i for i, arg in enumerate(flat_args) if diff_arg(arg, requires_grad=requires_grad))
    assert len(diff_argnums) > 0
    primals = tuple(flat_args[i] for i in diff_argnums)

    @functools.wraps(f)
    def wrapped(*primals):
        _args = list(flat_args)
        for num, arg in zip(diff_argnums, primals):
            _args[num] = arg
        _args = tree_unflatten(_args, args_spec)
        result = f(*_args, **kwargs)
        if output_process_fn_grad is not None:
            result = output_process_fn_grad(result)
        if isinstance(result, tuple):
            result = tuple(r for r in result if torch.is_floating_point(r))
            assert len(result) > 0
        return result
    return wrapped, primals


# TODO: consolidate with normalize_op_input_output2
def normalize_op_input_output3(f, args, kwargs, sample_args, output_process_fn_grad=None):
    flat_args, args_spec = tree_flatten(args)
    flat_sample_args, _ = tree_flatten(sample_args)
    diff_argnums = tuple(i for i, (arg, sample) in enumerate(zip(flat_args, flat_sample_args))
                         if diff_arg(sample, requires_grad=True))
    assert len(diff_argnums) > 0
    primals = tuple(flat_args[i] for i in diff_argnums)

    @functools.wraps(f)
    def wrapped(*primals):
        _args = list(flat_args)
        for num, arg in zip(diff_argnums, primals):
            _args[num] = arg
        _args = tree_unflatten(_args, args_spec)
        result = f(*_args, **kwargs)
        if output_process_fn_grad is not None:
            result = output_process_fn_grad(result)
        if isinstance(result, tuple):
            result = tuple(r for r in result if torch.is_floating_point(r))
            assert len(result) > 0
        return result
    return wrapped, primals


def normalize_op_input_output(f, sample, requires_grad=True):
    args = tuple([sample.input] + list(sample.args))
    return normalize_op_input_output2(
        f, args, sample.kwargs, sample.output_process_fn_grad, requires_grad=requires_grad
    )


def ref_vjp(f, *primals):
    result = f(*primals)

    def wrapped(cotangents):
        return _autograd_grad(_as_tuple(result), primals, _as_tuple(cotangents))

    return result, wrapped


def simulate_jvp(f, primals, tangents):
    primals_out, tangents_out = torch.autograd.functional.jvp(f, primals, tangents)
    return primals_out, tangents_out


def ref_jvp(f, primals, tangents):
    with fwAD.dual_level():
        duals = tuple(fwAD.make_dual(p, t) for p, t in zip(primals, tangents))
        result_duals = f(*duals)
        result_duals, spec = tree_flatten(result_duals)
        primals_out, tangents_out = zip(*(fwAD.unpack_dual(d) for d in result_duals))
        return tree_unflatten(primals_out, spec), tree_unflatten(tangents_out, spec)


def get_sample_cotangents(f, sample):
    fn, primals = normalize_op_input_output(f, sample)
    output = fn(*primals)
    return tree_map(torch.randn_like, output)


# returns a new function g(*args, *cotangents)
# that computes vjps and (*args, cotangents)
def get_vjp_fn_and_args_with_cotangents(f, sample, cotangents):
    args = tuple([sample.input] + list(sample.args))
    kwargs = sample.kwargs
    flat_args, args_spec = tree_flatten(args)
    flat_cotangents, cotangents_spec = tree_flatten(cotangents)

    @functools.wraps(f)
    def wrapped(*args):
        assert len(args) == len(flat_args) + len(flat_cotangents)
        actual_args = args[:len(flat_args)]
        cotangents = args[len(flat_args):]
        actual_args = tree_unflatten(actual_args, args_spec)
        cotangents = tree_unflatten(cotangents, cotangents_spec)

        fn, primals = normalize_op_input_output3(f, actual_args, kwargs,
                                                 flat_args,
                                                 sample.output_process_fn_grad)
        _, vjp_fn = vjp(fn, *primals)
        return vjp_fn(cotangents)

    return wrapped, tuple(flat_args + flat_cotangents)


# Returns a new function g(*args, *cotangents) that computes vjps and
# sample (*args, *cotangents)
def get_vjpfull_variant(f, sample):
    fn, primals = normalize_op_input_output(f, sample)
    result = fn(*primals)
    cotangents = _as_tuple(
        tree_map(lambda x: torch.randn_like(x, requires_grad=True), result))
    num_primals = len(primals)
    args = (*primals, *cotangents)

    @functools.wraps(f)
    def wrapped(*args):
        primals = args[:num_primals]
        cotangents = args[num_primals:]
        result, vjp_fn = vjp(fn, *primals)
        if isinstance(result, torch.Tensor):
            assert len(cotangents) == 1
            cotangents = cotangents[0]
        return vjp_fn(cotangents)

    return wrapped, args


def get_jvp_variant(f, sample):
    # We want this higher-order variant of jvp, so that it can
    # be used to wrap vmap
    fn, primals = normalize_op_input_output(f, sample, requires_grad=False)
    tangents = _as_tuple(
        tree_map(lambda x: torch.randn_like(x), primals))

    @functools.wraps(f)
    def wrapped(*args):
        tangents = args
        primals_out, tangents_out = jvp(fn, primals, tangents)

        if isinstance(primals_out, torch.Tensor):
            return (primals_out, tangents_out)
        else:
            flat_primals_out, _ = tree_flatten(primals_out)
            flat_tangents_out, _ = tree_flatten(tangents_out)
            return tuple(flat_primals_out + flat_tangents_out)

    return wrapped, tangents


def get_jvp_variant_primals_tangents(f, sample):
    # We want this higher-order variant of jvp, so that it can
    # be used to wrap vmap
    fn, primals = normalize_op_input_output(f, sample, requires_grad=False)
    tangents = _as_tuple(
        tree_map(lambda x: torch.randn_like(x), primals))

    @functools.wraps(f)
    def wrapped(*args):
        primals_in = args[:len(primals)]
        tangents_in = args[len(primals):]
        primals_out, tangents_out = jvp(fn, primals_in, tangents_in)

        if isinstance(primals_out, torch.Tensor):
            return (primals_out, tangents_out)
        else:
            flat_primals_out, _ = tree_flatten(primals_out)
            flat_tangents_out, _ = tree_flatten(tangents_out)
            return tuple(flat_primals_out + flat_tangents_out)

    return wrapped, primals + tangents


def is_inplace(op, variant):
    if hasattr(variant, "__wrapped__"):
        return variant.__wrapped__ is op.get_inplace()
    return variant is op.get_inplace()


vjp_fail = {
    xfail('tensor_split'),  # data_ptr composite compliance
}

aliasing_ops = {
    'T',
    'broadcast_to',
    'conj',
    'contiguous',
    'diagonal',  # linalg.diagonal is an alias
    'expand',
    'flatten',
    'imag',
    'mH',  # adjoint is an alias
    'mT',
    'movedim',  # moveaxis is an alias
    'narrow',
    'permute',
    'positive',
    # 'ravel', is composite implict autograd and may call clone
    'real',
    'reshape',
    'resolve_conj',
    'resolve_neg',
    'select',
    'squeeze',
    'transpose',  # swapdims and swapaxes are aliases
    'unflatten',
    'unfold',
    'unsqueeze',
    'view',
    'view_as',
    'view_as_complex',
    'view_as_real',
}

aliasing_ops_list_return = {
    'chunks',
    'dsplit',
    'hsplit',
    'split',
    'unbind',
    'vsplit',
    # 'tensor_split' not composite compliant, see vjp_fail
}


class TestOperators(TestCase):
    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestOperators', 'test_grad', vjp_fail.union({
        xfail('linalg.eig'),  # diagonal_scatter does not support complex
        xfail('chalf', '', device_type='cpu'),  # RuntimeError: "sum_cpu" not implemented for 'ComplexHalf'
        skip('as_strided_scatter', ''),  # silent incorrectness; seems flaky
        xfail('sparse.sampled_addmm', ''),  # RuntimeError: Sparse CSR tensors do not have strides
        xfail('to_sparse', ''),  # Could not run 'aten::sum.dim_IntList'
    }))
    @opsToleranceOverride('TestOperators', 'test_grad', (
        tol1('nn.functional.binary_cross_entropy_with_logits',
             {torch.float32: tol(atol=1e-04, rtol=1e-04)}),
    ))
    def test_grad(self, device, dtype, op):
        if op.name in vjp_fail:
            self.skipTest("Skipped; Expected failures")
            return

        if not op.supports_autograd:
            self.skipTest("Skipped! Autograd not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        if is_inplace(op, op.get_op()):
            self.skipTest("Skipped for redundancy. test_vjp handles in-place testing.")
            return

        for sample in samples:
            args = [sample.input] + list(sample.args)
            kwargs = sample.kwargs

            diff_argnums = tuple(i for i, arg in enumerate(args) if diff_arg(arg))
            assert len(diff_argnums) > 0
            diff_args = tuple(args[i] for i in diff_argnums)

            def wrapped_fn(*args, **kwargs):
                result = op(*args, **kwargs)
                if sample.output_process_fn_grad is not None:
                    result = sample.output_process_fn_grad(result)

                # Reduce into single value for grad
                if isinstance(result, torch.Tensor):
                    return result.sum()
                result = sum([res.sum() for res in result])
                return result

            result = grad(wrapped_fn, diff_argnums)(*args, **kwargs)
            expected = _autograd_grad(_as_tuple(wrapped_fn(*args, **kwargs)), diff_args)

            self.assertEqual(result, expected)

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestOperators', 'test_jvp', set({
        # Composite ops that do bad things. Need to be fixed in PyTorch core.
        # RuntimeError: Cannot access data pointer of Tensor that doesn't have storage
        xfail('tensor_split'),

        # BUG: silent incorrectness: runs and produces numerical differences
        skip('nn.functional.max_unpool1d'),  # fails everywhere except on mac
        skip('nn.functional.max_unpool2d'),  # fails everywhere except on windows
        skip('nn.functional.max_unpool3d'),  # fails everywhere except on mac
        xfail("native_batch_norm"),

        xfail('nn.functional.rrelu')  # in-place test errors out with no formula implemented
    }))
    @opsToleranceOverride('TestOperators', 'test_jvp', (
        tol1('nn.functional.conv_transpose3d',
             {torch.float32: tol(atol=1e-04, rtol=1.3e-06)}, device_type='cuda'),
        tol1('nn.functional.binary_cross_entropy_with_logits',
             {torch.float32: tol(atol=4e-04, rtol=4e-04)}),
    ))
    def test_jvp(self, device, dtype, op):
        # TODO: get rid of vjp_decomp when we add decomposition support to
        # PyTorch's forward-mode ad. Currently the decomposition support only
        # works for functorch.jvp
        VJP_DECOMP = {
            'nn.functional.logsigmoid',
        }
        if op.name in VJP_DECOMP:
            fixme_ref_jvp_local = simulate_jvp
        else:
            fixme_ref_jvp_local = ref_jvp

        if not op.supports_forward_ad and op.name not in VJP_DECOMP:
            self.skipTest("Skipped! Forward AD not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        outplace_variant = op if not is_inplace(op, op.get_op()) else None
        inplace_variant = op.inplace_variant if op.supports_inplace_autograd else None

        for sample in samples:
            args = (sample.input,) + sample.args
            kwargs = sample.kwargs
            if outplace_variant:
                self.jvp_opinfo_test(outplace_variant, args, kwargs,
                                     sample.output_process_fn_grad,
                                     clone_inputs=False,
                                     fixme_ref_jvp_local=fixme_ref_jvp_local)
            if is_valid_inplace_sample_input(sample, op, inplace_variant):
                self.jvp_opinfo_test(inplace_variant, args, kwargs,
                                     sample.output_process_fn_grad,
                                     clone_inputs=True,
                                     fixme_ref_jvp_local=fixme_ref_jvp_local)

    def jvp_opinfo_test(self, fn, args, kwargs, output_process_fn,
                        clone_inputs, fixme_ref_jvp_local):
        # NB: we used requires_grad=True to determine where the primals are,
        # but don't need that information otherwise
        fn, primals = normalize_op_input_output2(
            fn, args, kwargs, output_process_fn, requires_grad=True)
        orig_primals = tree_map(lambda x: x.detach(), primals)
        orig_tangents = tree_map(lambda x: torch.randn_like(x), primals)

        def maybe_clone_inputs():
            if clone_inputs:
                primals = tree_map(torch.clone, orig_primals)
                tangents = tree_map(torch.clone, orig_tangents)
                return primals, tangents
            return orig_primals, orig_tangents

        primals, tangents = maybe_clone_inputs()
        expected_primal_outs, expected_tangent_outs = \
            fixme_ref_jvp_local(fn, primals, tangents)

        primals, tangents = maybe_clone_inputs()
        primal_outs, tangent_outs = jvp(fn, primals, tangents)

        self.assertEqual(primal_outs, expected_primal_outs)
        self.assertEqual(tangent_outs, expected_tangent_outs)

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestOperators', 'test_vjp', vjp_fail.union({
        skip('as_strided_scatter', ''),  # silent incorrectness; also might be flaky
        xfail('sparse.sampled_addmm', ''),
    }))
    @opsToleranceOverride('TestOperators', 'test_vjp', (
        tol1('nn.functional.conv_transpose3d',
             {torch.float32: tol(atol=5e-05, rtol=9e-05)}, device_type='cuda'),
        tol1('nn.functional.binary_cross_entropy_with_logits',
             {torch.float32: tol(atol=1e-04, rtol=1e-04)}),
    ))
    def test_vjp(self, device, dtype, op):
        if not op.supports_autograd:
            self.skipTest("Skipped! Autograd not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        def _test(_op, inplace=False):
            for sample in samples:
                if inplace and not is_valid_inplace_sample_input(sample, op, op.inplace_variant):
                    continue
                fn, primals = normalize_op_input_output(_op, sample)
                result = fn(*primals)
                cotangents = tree_map(lambda x: torch.randn_like(x), result)

                out, vjp_fn = vjp(fn, *primals)
                self.assertEqual(out, result)
                result_vjps = vjp_fn(cotangents)

                _, vjp_fn = ref_vjp(fn, *primals)
                expected_vjps = vjp_fn(cotangents)

                self.assertEqual(result_vjps, expected_vjps)

        _test(op)
        for a_op in op.aliases:
            _test(a_op)
        if op.inplace_variant:
            def f(inp, *args, **kwargs):
                return op.inplace_variant(inp.clone(), *args, **kwargs)
            _test(f, inplace=True)

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestOperators', 'test_vjpvjp', vjp_fail.union({
        skip('nn.functional.max_unpool1d'),  # silent incorrectness; Flaky
        skip('nn.functional.max_unpool2d'),  # silent incorrectness; Flaky
        xfail('nn.functional.ctc_loss'),  # Not Implemented
        xfail('native_layer_norm', ''),  # Expected a proper Tensor but got None for argument #1 'other'
        xfail('sparse.sampled_addmm', ''),  # sparse tensors have no strides
        # AssertionError: Tensor-likes are not close!
        # Mismatched elements: 1 / 15 (6.7%)
        # Greatest absolute difference: 24.0 at index (2, 4) (up to 1e-05 allowed)
        # Greatest relative difference: 1.7933241714393998e-06 at index (2, 4) (up to 1.3e-06 allowed)
        # The failure occurred for item [0]
        xfail('masked.prod')
    }))
    @opsToleranceOverride('TestOperators', 'test_vjpvjp', (
        tol1('nn.functional.conv_transpose3d',
             {torch.float32: tol(atol=5e-05, rtol=9e-05)}, device_type='cuda'),
        tol1('prod',
             {torch.float32: tol(atol=2e-05, rtol=1e-04)}),
        tol1('masked.cumprod',
             {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
        tol1('cumprod',
             {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
        tol1('linalg.vander',
             {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
        tol2('linalg.det', 'singular',
             {torch.float32: tol(atol=2e-05, rtol=2e-05)}),
    ))
    def test_vjpvjp(self, device, dtype, op):
        if not op.supports_autograd:
            self.skipTest("Skipped! Autograd not supported.")
            return
        if not op.supports_gradgrad:
            self.skipTest("Skipped! Operation does not support gradgrad")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        def test(_op, inplace=False):
            for sample in samples:
                if inplace and not is_valid_inplace_sample_input(sample, op, op.inplace_variant):
                    continue
                fn, args = get_vjpfull_variant(_op, sample)
                result = fn(*args)
                cotangents = tree_map(lambda x: torch.randn_like(x), result)

                # Compute vjp of vjp
                _, vjp_fn = vjp(fn, *args)
                result_vjps = vjp_fn(cotangents)

                # Compute ref_vjp of vjp. We could have done ref_vjp of ref_vjp,
                # but since we're confident that vjp works by itself, this is
                # an equivalent way to test that.
                _, vjp_fn = ref_vjp(fn, *args)
                expected_vjps = vjp_fn(cotangents)

                self.assertEqual(result_vjps, expected_vjps)

        test(op)
        if op.inplace_variant:
            def fn(inp, *args, **kwargs):
                return op.inplace_variant(inp.clone(), *args, **kwargs)
            test(fn, inplace=True)

    @skipOps('TestOperators', 'test_vmapvjpvjp', vjp_fail.union({
        skip("atleast_1d"),  # Takes too long
        skip("atleast_2d"),  # Takes too long
        skip("atleast_3d"),  # Takes too long
        xfail("as_strided"),  # incorrect output
        xfail("as_strided_scatter"),  # incorrect output
        skip("bernoulli"),  # calls random op
        xfail("bfloat16"),  # rank 4 tensor for channels_last
        xfail("chalf"),  # rank 4 tensor for channels_last
        xfail("double"),  # rank 4 tensor for channels_last
        xfail("float"),  # rank 4 tensor for channels_last
        xfail("half"),  # rank 4 tensor for channels_last
        # It looks like you're either (1) calling .item() on a Tensor or
        # (2) attempting to use a Tensor in some data-dependent control flow or
        # (3) encountering this error in PyTorch internals.
        xfail("index_reduce"),
        xfail("linalg.eig"),  # vmap over torch.allclose
        xfail("linalg.eigvals"),  # vmap over torch.allclose
        xfail("linalg.householder_product"),  # vmap: inplace into a regular tensor
        xfail("nanquantile", device_type='cpu'),  # vmap not implemented for at::equal.
        xfail("native_layer_norm"),  # vmap: inplace into a regular tensor
        # got a batched tensor as input while the running_mean or running_var,
        # which will be updated in place, were not batched.
        xfail("nn.functional.batch_norm"),
        xfail("nn.functional.binary_cross_entropy"),  # vmap: inplace into a regular tensor
        xfail("nn.functional.ctc_loss"),  # derivate not implemented for _ctc_loss_backward
        skip("nn.functional.dropout"),  # calls random op
        skip("nn.functional.dropout2d"),  # calls random op
        skip("nn.functional.dropout3d"),  # calls random op
        skip("nn.functional.feature_alpha_dropout", "with_train"),  # calls random op
        skip("nn.functional.fractional_max_pool2d"),  # calls random op
        skip("nn.functional.fractional_max_pool3d"),  # calls random op
        skip('nn.functional._scaled_dot_product_attention'),  # randomness
        # It looks like you're either (1) calling .item() on a Tensor or
        # (2) attempting to use a Tensor in some data-dependent control flow or
        # (3) encountering this error in PyTorch internals.
        xfail("nn.functional.gaussian_nll_loss"),
        # got a batched tensor as input while the running_mean or running_var,
        # which will be updated in place, were not batched.
        xfail("nn.functional.instance_norm"),
        xfail("nn.functional.layer_norm"),  # vmap: inplace into a regular tensor
        # RuntimeError: NYI: querying is_contiguous inside of vmap
        # for memory_format other than torch.contiguous_formats
        xfail("nn.functional.max_pool2d"),
        # RuntimeError: NYI: Tensor.clone(memory_format) inside vmap is only
        # supported with memory_format torch.preserve_format or
        # torch.contiguous_format (got ChannelsLast)
        xfail("nn.functional.max_unpool2d"),
        # RuntimeError: NYI: Tensor.clone(memory_format) inside vmap is only
        # supported with memory_format torch.preserve_format
        # or torch.contiguous_format (got ChannelsLast)s
        xfail("nn.functional.max_unpool2d", "grad"),
        xfail("nn.functional.rrelu"),  # RuntimeError: vmap: we do not yet support aten::rrelu_with_noise.
        xfail("normal"),  # calls random op
        xfail("normal", "number_mean"),  # calls random op
        xfail("pca_lowrank"),  # calls random op
        xfail("put"),  # vmap: inplace into a regular tensor
        xfail("quantile", device_type='cpu'),  # Batching rule not implemented for `at::equal`
        xfail("scatter_reduce", "prod"),  # vmap (looks like you are calling item/data-dependent)
        xfail("sparse.sampled_addmm"),  # RuntimeError: Sparse CSR tensors do not have strides
        xfail("svd_lowrank"),  # calls random op
        xfail("take"),  # vmap: inplace into a regular tensor
        xfail("to"),  # rank 4 tensor for channels_last
        xfail("view_as_complex"),  # RuntimeError: Tensor must have a last dimension with stride 1
        xfail("masked.softmax", device_type='cuda'),  # Mismatch in values!
        xfail("masked.softmin", device_type='cuda'),  # Mismatch in values!
        # got a batched tensor as input while the running_mean or running_var,
        # which will be updated in place, were not batched.
        xfail("nn.functional.batch_norm", 'without_cudnn'),
        # view doesn't work on sparse
        xfail("to_sparse"),
        xfail("native_batch_norm"),
    }))
    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
    @opsToleranceOverride('TestOperators', 'test_vmapvjpvjp', (
        tol1('linalg.svd',
             {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
        tol1('linalg.lu_factor',
             {torch.float32: tol(atol=2e-03, rtol=2e-02)}),
        tol1('svd',
             {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
    ))
    def test_vmapvjpvjp(self, device, dtype, op):
        # Since, we test `vjpvjp` independently,
        # for this test, we just verify that vmap
        # of `vjpvjp` is correct.
        if not op.supports_autograd:
            self.skipTest("Skipped! Autograd not supported.")
            return
        if not op.supports_gradgrad:
            self.skipTest("Skipped! Operation does not support gradgrad")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        # TODO: test in-place
        if is_inplace(op, op.get_op()):
            self.skipTest("Skipped! NYI: inplace-testing not supported.")
            return

        for sample in samples:
            fn, args = get_vjpfull_variant(op, sample)
            result = fn(*args)
            cotangents = tree_map(lambda x: torch.randn_like(x), result)
            cotangents, _ = tree_flatten(cotangents)
            num_args = len(args)

            args_and_cotangents = tuple(args) + tuple(cotangents)

            def vjp_of_vjp(*args_and_cotangents):
                args = args_and_cotangents[:num_args]
                cotangents = args_and_cotangents[num_args:]
                result, vjp_fn = vjp(fn, *args)
                result_vjps = vjp_fn(cotangents)
                result, _ = tree_flatten(result)
                result_vjps, _ = tree_flatten(result_vjps)
                return (*result, *result_vjps)

            is_batch_norm_and_training = is_batch_norm_training(op.name, sample.kwargs)
            generator = get_fallback_and_vmap_exhaustive(
                vjp_of_vjp, args_and_cotangents, {}, is_batch_norm_and_training=is_batch_norm_and_training)
            for loop_out, batched_out in generator:
                self.assertEqual(loop_out, batched_out)

    vmapvjp_fail = vjp_fail.union({
        # -------------------- ALLOWED FAILURES --------------------------------
        # The following are not bugs and are expected behavior
        xfail('masked_select'),  # Not possible due to dynamic shapes
        skip('bernoulli'),  # randomness
        skip('normal', ''),  # randomness
        skip('normal', 'number_mean'),  # randomness
        skip('nn.functional.rrelu'),  # randomness
        skip('nn.functional.feature_alpha_dropout', 'with_train'),  # randomness
        skip('nn.functional.feature_alpha_dropout', 'without_train'),  # randomness
        skip('nn.functional.dropout'),  # randomness
        skip('nn.functional.dropout2d'),  # randomness
        skip('nn.functional.dropout3d', ''),  # randomness
        skip('nn.functional._scaled_dot_product_attention'),  # randomness
        xfail('as_strided'),  # as_strided is too wild for us to support, wontfix
        xfail('index_put', ''),  # not possible due to dynamic shapes; we support a subset
        xfail('masked_scatter'),  # dynamic
        xfail('nn.functional.fractional_max_pool2d'),  # random
        xfail('nn.functional.fractional_max_pool3d'),  # random
        xfail('take'),  # dynamic
        xfail('pca_lowrank', ''),  # randomness
        xfail('svd_lowrank', ''),  # randomness
        xfail('to_sparse', ''),  # non-dense output
        skip('to'),  # RuntimeError: required rank 4 tensor to use channels_last format
        # ----------------------------------------------------------------------

        # ---------------------------- BUGS ------------------------------------
        # All of the following are bugs and need to be fixed
        skip('linalg.svdvals'),  # # really annoying thing where it passes correctness check but not has_batch_rule
        skip("native_batch_norm"),
        xfail('__getitem__', ''),  # dynamic error
        xfail('linalg.eig'),  # Uses aten::allclose
        xfail('linalg.householder_product'),  # needs select_scatter
        xfail('nanquantile', device_type='cpu'),  # checks q via a .item() call
        xfail('nn.functional.gaussian_nll_loss'),  # checks var for if any value < 0
        xfail('narrow'),  # .item() call
        xfail('quantile', device_type='cpu'),  # checks q via a .item() call
        xfail('view_as_complex'),  # Tensor must have a last dimension with stride 1

        # required rank 4 tensor to use channels_last format
        xfail('bfloat16'),
        xfail('double'),
        xfail('float'),
        xfail('half'),
        xfail('chalf', ''),

        xfail('scatter_reduce', 'prod'),  # item call

        # Batching rule not implemented for aten::_use_cudnn_ctc_loss.Tensor
        xfail('nn.functional.ctc_loss', device_type='cuda'),
        # NYI: querying is_contiguous inside of vmap for memory_format other than torch.contiguous_format
        xfail('nn.functional.max_unpool2d'),
        xfail('nn.functional.max_unpool2d', 'grad'),

        xfail('sparse.sampled_addmm', ''),
        xfail('as_strided_scatter', ''),  # calls as_strided
        xfail('index_reduce', ''),  # .item() call
        # ---------------------------------------------------------------------
    })

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
    @opsToleranceOverride('TestOperators', 'test_vmapvjp', (
        tol1('linalg.svd',
             {torch.float32: tol(atol=1.5e-04, rtol=1e-04)}, device_type="cuda"),
        tol1('svd',
             {torch.float32: tol(atol=1.5e-04, rtol=1e-04)}, device_type="cuda"),
    ))
    @skipOps('TestOperators', 'test_vmapvjp', vmapvjp_fail)
    def test_vmapvjp(self, device, dtype, op):
        if not op.supports_autograd:
            self.skipTest("Skipped! Autograd not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        # TODO: test in-place
        if is_inplace(op, op.get_op()):
            self.skipTest("Skipped! NYI: inplace-testing not supported.")
            return

        for sample in samples:
            cotangents = get_sample_cotangents(op, sample)
            fn, args = get_vjp_fn_and_args_with_cotangents(op, sample, cotangents)
            is_batch_norm_and_training = is_batch_norm_training(op.name, sample.kwargs)
            generator = get_fallback_and_vmap_exhaustive(
                fn, args, {}, is_batch_norm_and_training=is_batch_norm_and_training)
            for loop_out, batched_out in generator:
                self.assertEqual(loop_out, batched_out)

    vmapjvpall_fail = {
        # -------------------- ALLOWED FAILURES --------------------------------
        # The following are expected (not a bug)
        skip('bernoulli', ''),  # randomness
        skip('nn.functional.dropout'),  # randomness
        skip('nn.functional.rrelu'),  # randomness
        skip('nn.functional.dropout2d', ''),
        skip('nn.functional.dropout3d', ''),
        skip('nn.functional._scaled_dot_product_attention'),  # randomness
        skip('nn.functional.feature_alpha_dropout', 'without_train'),
        skip('nn.functional.feature_alpha_dropout', 'with_train'),
        xfail('nn.functional.fractional_max_pool2d'),  # Cannot access data pointer of Tensor that doesn't have storage
        xfail('nn.functional.fractional_max_pool3d'),  # Cannot access data pointer of Tensor that doesn't have storage
        # Not actually a problem: embedding with max_norm mutates the weight
        # and causes different runs to produce different results.
        # skip because this is flaky depending on what the max_norm is!
        skip('nn.functional.embedding', ''),
        skip('to'),  # RuntimeError: required rank 4 tensor to use channels_last format
        # ----------------------------------------------------------------------

        # ---------------------------- BUGS ------------------------------------
        # The following are bugs that we should fix
        decorate('nn.functional.conv2d', decorator=unittest.skipIf(IS_ARM64, "Fails on M1")),
        skip('nn.functional.max_pool1d'),  # fails on cpu, runs on cuda
        xfail('masked.mean'),  # silent incorrectness (nan difference)

        xfail('nn.functional.soft_margin_loss', ''),  # soft_margin_loss_backward does not support forward-ad
        xfail('tensor_split'),  # data_ptr composite compliance
        xfail('quantile'),  # at::equal batching rule (cpu), also, in-place vmap (cuda)
        skip('as_strided'),  # Test runner cannot handle this
        xfail('nn.functional.gaussian_nll_loss'),  # .item or data-dependent control flow
        xfail('scatter'),  # forward-mode AD does not support at::scatter
        xfail('nanquantile'),  # at::equal batching rule (cpu), also, in-place vmap (cuda)
        xfail('view_as_complex'),  # Tensor must have a last dimension with stride 1

        skip('pca_lowrank', ''),  # randomness
        skip('svd_lowrank', ''),  # randomness

        xfail('double'),  # required rank 4 tensor to use channels_last format

        # potential silent incorrectness
        skip('nn.functional.max_unpool1d'),  # Flaky, seems to sometimes his max_unpool2d
        skip('nn.functional.max_unpool2d'),  # fails everywhere except on mac
        skip('nn.functional.max_unpool3d'),  # fails everywhere except on mac

        # erroring because running_mean and running_var aren't differentiable
        xfail('nn.functional.batch_norm'),
        xfail('nn.functional.batch_norm', 'without_cudnn'),
        xfail("native_batch_norm"),
        # ----------------------------------------------------------------------
    }

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @opsToleranceOverride('TestOperators', 'test_vmapjvpall', (
        tol1('nn.functional.conv_transpose3d',
             {torch.float32: tol(atol=2e-04, rtol=9e-3)}, device_type='cuda'),
        tol1('linalg.householder_product',
             {torch.float32: tol(atol=2e-04, rtol=9e-3)}, device_type='cuda'),
        tol1('linalg.householder_product',
             {torch.float32: tol(atol=2e-04, rtol=1e-4)}, device_type='cpu'),
    ))
    @skipOps('TestOperators', 'test_vmapjvpall', vmapjvpall_fail)
    @toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
    # This is technically a superset of test_vmapjvp. We should either delete test_vmapjvp
    # or figure out if we can split vmapjvpall. It's useful to keep test_vmapjvp intact
    # because that coresponds to "batched forward-mode AD" testing in PyTorch core
    def test_vmapjvpall(self, device, dtype, op):
        if is_inplace(op, op.get_op()):
            # TODO: test in-place
            self.skipTest("Skipped! NYI: inplace-testing not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=False)

        if not op.supports_forward_ad:
            self.skipTest("Skipped! Forward AD not supported.")
            return

        for sample in samples:
            arg_values = [sample.input] + list(sample.args)
            kwarg_values = sample.kwargs
            args = tuple(arg_values) + tuple(kwarg_values)
            fn, args = get_jvp_variant_primals_tangents(op, sample)
            is_batch_norm_and_training = is_batch_norm_training(op.name, kwarg_values)
            generator = get_fallback_and_vmap_exhaustive(
                fn, args, {}, is_batch_norm_and_training=is_batch_norm_and_training)
            for loop_out, batched_out in generator:
                self.assertEqual(loop_out, batched_out)

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestOperators', 'test_vmapjvpall_has_batch_rule', vmapjvpall_fail.union({
        skip('to'),  # RuntimeError: required rank 4 tensor to use channels_last format
        xfail('nn.functional.huber_loss'),
        xfail('lu'),
        xfail('cumprod'),
        xfail('masked_fill'),
        xfail('copysign'),
        xfail('complex'),
        skip('masked.mean'),  # ???
        xfail('masked_scatter'),
        xfail('index_fill'),
        xfail('put'),
        xfail('take'),
        xfail('nn.functional.max_pool3d'),
        xfail('vdot'),
        xfail('nanmean'),
        xfail('nansum'),
        xfail('nn.functional.feature_alpha_dropout', 'without_train'),
        xfail('linalg.lu_factor', ''),
        xfail('nn.functional.dropout2d', ''),
        xfail('pca_lowrank', ''),
        xfail('svd_lowrank', ''),
        xfail('linalg.lu_factor_ex', ''),
        xfail('nn.functional.feature_alpha_dropout', 'with_train'),
        xfail('special.log_ndtr', ''),
        xfail('fft.ihfft2'),  # conj_physical fallback
        xfail('fft.ihfftn'),  # conj_physical fallback
        xfail('polar'),  # complex fallback
        xfail('nn.functional.max_unpool3d', 'grad'),
        xfail('nn.functional.smooth_l1_loss', ''),
        xfail('nn.functional.max_unpool2d', 'grad'),
        xfail('nn.functional.soft_margin_loss', ''),
        xfail('nn.functional.max_unpool1d', 'grad'),
        xfail('nn.functional.embedding', ''),
        xfail('scatter_reduce', "sum"),   # aten::scatter_reduce.two hit the vmap fallback
        xfail('scatter_reduce', "mean"),  # aten::scatter_reduce.two hit the vmap fallback
        xfail('scatter_reduce', "amin"),  # aten::scatter_reduce.two hit the vmap fallback
        xfail('scatter_reduce', "amax"),  # aten::scatter_reduce.two hit the vmap fallback
        xfail('lu_unpack'),
        xfail('nn.functional.glu'),
        xfail('nn.functional.bilinear'),  # trilinear doesn't have batching rule
        xfail('linalg.lu', ''),
        xfail('linalg.lu_solve', ''),
        xfail('nn.functional.dropout3d', ''),
        xfail('as_strided_scatter', ''),
        xfail('masked.cumprod', ''),
        xfail('linalg.vecdot', ''),
    }))
    @toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
    def test_vmapjvpall_has_batch_rule(self, device, dtype, op):
        if is_inplace(op, op.get_op()):
            # TODO: test in-place
            self.skipTest("Skipped! NYI: inplace-testing not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=False)

        if not op.supports_forward_ad:
            self.skipTest("Skipped! Forward AD not supported.")
            return

        def test():
            for sample in samples:
                arg_values = [sample.input] + list(sample.args)
                kwarg_values = sample.kwargs
                args = tuple(arg_values) + tuple(kwarg_values)
                fn, args = get_jvp_variant_primals_tangents(op, sample)
                is_batch_norm_and_training = is_batch_norm_training(op.name, kwarg_values)
                for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
                        fn, args, {}, is_batch_norm_and_training=is_batch_norm_and_training, compute_loop_out=False):
                    pass
        check_vmap_fallback(self, test, op, dry_run=False)

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
    @skipOps('TestOperators', 'test_vmapvjp_has_batch_rule', vmapvjp_fail.union({
        skip('to'),  # RuntimeError: required rank 4 tensor to use channels_last format
        xfail('view_as_complex'),
        xfail('complex'),
        xfail('copysign'),
        xfail('cummax'),
        xfail('cummin'),
        xfail('cumprod'),
        xfail('nansum'),
        xfail('nanmean'),
        xfail('narrow'),  # Batching rule not implemented for `narrow.Tensor` (and view op)
        xfail('special.log_ndtr'),
        xfail('index_copy'),
        xfail('index_fill'),
        xfail('linalg.eig'),
        xfail('linalg.householder_product'),
        xfail('lu'),
        xfail('lu_solve'),
        xfail('lu_unpack'),
        xfail('masked_fill'),
        xfail('masked_scatter'),
        xfail('masked_select'),
        xfail('nanquantile'),
        xfail('put'),
        xfail('scatter_reduce', "sum"),   # aten::scatter_reduce.two hit the vmap fallback
        xfail('scatter_reduce', "mean"),  # aten::scatter_reduce.two hit the vmap fallback
        xfail('scatter_reduce', "amin"),  # aten::scatter_reduce.two hit the vmap fallback
        xfail('scatter_reduce', "amax"),  # aten::scatter_reduce.two hit the vmap fallback
        xfail('quantile'),
        xfail('renorm'),
        xfail('take'),
        xfail('tensor_split'),
        xfail('to_sparse'),
        xfail('unfold'),
        xfail('vdot'),
        xfail('nn.functional.dropout'),
        xfail('fft.ihfft2'),
        xfail('fft.ihfftn'),
        xfail('nn.functional.gaussian_nll_loss'),
        xfail('nn.functional.huber_loss'),
        xfail('nn.functional.bilinear'),
        xfail('nn.functional.fractional_max_pool3d'),
        xfail('nn.functional.ctc_loss'),
        xfail('as_strided'),
        xfail('stft'),
        xfail('nn.functional.rrelu'),
        xfail('nn.functional.embedding_bag'),
        xfail('nn.functional.max_pool3d'),
        xfail('nn.functional.fractional_max_pool2d'),
        xfail('linalg.lu_factor', ''),
        xfail('nn.functional.feature_alpha_dropout', 'with_train'),
        xfail('pca_lowrank', ''),
        xfail('nn.functional.dropout2d', ''),
        xfail('nn.functional.feature_alpha_dropout', 'without_train'),
        xfail('svd_lowrank', ''),
        xfail('linalg.lu_factor_ex', ''),

        xfail('nn.functional.max_unpool2d', ''),
        xfail('nn.functional.multi_margin_loss', ''),
        xfail('nn.functional.multilabel_margin_loss', ''),
        xfail('nn.functional.pdist', ''),
        xfail('nn.functional.smooth_l1_loss', ''),
        xfail('scatter_reduce', 'prod'),
        xfail('nn.functional.max_unpool1d', ''),
        xfail('nn.functional.max_unpool3d', ''),
        xfail('nn.functional.max_unpool3d', 'grad'),
        xfail('nn.functional.soft_margin_loss', ''),
        xfail('nn.functional.max_unpool1d', 'grad'),
        xfail('nn.functional.max_unpool2d', 'grad'),
        xfail('linalg.lu', ''),
        xfail('linalg.lu_solve', ''),
        xfail('chalf', ''),
        xfail('index_reduce', ''),
        xfail('linalg.vander', ''),
        xfail('nn.functional.dropout3d', ''),
        xfail('as_strided_scatter', ''),
        xfail('segment_reduce', 'offsets'),
        xfail('masked.cumprod', ''),
        xfail('linalg.vecdot', ''),
        xfail('segment_reduce', 'lengths'),
        xfail('sparse.sampled_addmm', ''),
        xfail("native_batch_norm"),
    }))
    def test_vmapvjp_has_batch_rule(self, device, dtype, op):
        if not op.supports_autograd:
            self.skipTest("Skipped! Autograd not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        # TODO: test in-place
        if is_inplace(op, op.get_op()):
            self.skipTest("Skipped! NYI: inplace-testing not supported.")
            return

        def test():
            for sample in samples:
                cotangents = get_sample_cotangents(op, sample)
                fn, args = get_vjp_fn_and_args_with_cotangents(op, sample, cotangents)
                is_batch_norm_and_training = is_batch_norm_training(op.name, sample.kwargs)
                for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
                        fn, args, {}, is_batch_norm_and_training=is_batch_norm_and_training, compute_loop_out=False):
                    pass
                for a_op in op.aliases:
                    fn, args = get_vjp_fn_and_args_with_cotangents(a_op, sample, cotangents)
                    for loop_out, batched_out in get_fallback_and_vmap_exhaustive(
                            fn, args, {}, is_batch_norm_and_training=is_batch_norm_and_training, compute_loop_out=False):
                        pass

        check_vmap_fallback(self, test, op, dry_run=False)

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestOperators', 'test_vjpvmap', vjp_fail.union({
        skip('bernoulli', ''),  # vjpvmap testing can't handle randomness
        skip('normal', ''),  # vjpvmap testing can't handle randomness
        skip('normal', 'number_mean'),  # vjpvmap testing can't handle randomness
        skip('nn.functional.rrelu'),  # randomness
        skip('nn.functional.feature_alpha_dropout', 'with_train'),  # randomness
        skip('nn.functional.feature_alpha_dropout', 'without_train'),  # randomness
        skip('to'),  # RuntimeError: required rank 4 tensor to use channels_last format
        skip('to_sparse', ''),  # non-dense output

        # fallback path doesn't work
        # All of the following are bugs and need to be fixed
        xfail('__getitem__', ''),
        xfail('index_put', ''),
        xfail('view_as_complex'),
        xfail('nn.functional.gaussian_nll_loss'),
        xfail('masked_select'),
        xfail('narrow'),  # Batching rule not implemented for `narrow.Tensor` (and view op)
        skip('nn.functional.fractional_max_pool3d'),  # generator works on cpu, fails on cuda
        xfail('__rpow__'),  # https://github.com/pytorch/functorch/issues/617
        skip('nn.functional.fractional_max_pool2d'),  # generator works on cpu, fails on cuda
        xfail('column_stack', ''),
        xfail('nn.functional.dropout2d', ''),
        xfail('svd_lowrank', ''),
        xfail('pca_lowrank', ''),
        xfail('clamp'),
        xfail('cross'),  # The defaults of this op are *very* weird. No wonder it doesn't work
        # something weird happening with channels_last
        xfail('bfloat16'),
        xfail('double'),
        xfail('float'),
        xfail('half'),
        xfail('nn.functional.dropout3d', ''),
        xfail('as_strided_scatter', ''),
        xfail('sparse.sampled_addmm', ''),
        xfail("native_batch_norm"),
    }))
    def test_vjpvmap(self, device, dtype, op):
        # NB: there is no vjpvmap_has_batch_rule test because that is almost
        # certainly redundant with the vmap_has_batch_rule test in test_vmap.py

        # one-off skip
        if op.name == 'nn.functional.dropout':
            self.skipTest("Skipped!")

        if not op.supports_autograd:
            # If the op doesn't support autograd, vmap(op) won't either
            self.skipTest("Skipped! Autograd not supported.")
            return

        # TODO: test in-place
        if is_inplace(op, op.get_op()):
            self.skipTest("Skipped! NYI: inplace-testing not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)
        batch_norm_fns = ("nn.functional.batch_norm", "nn.functional.instance_norm")  # instance norm calls batch norm
        is_batch_norm = op.name in batch_norm_fns

        for sample in samples:
            args = [sample.input] + list(sample.args)
            kwargs = sample.kwargs

            is_batch_norm_and_training = is_batch_norm and is_batch_norm_training(op.name, kwargs)
            generator = generate_vmap_inputs(args, kwargs,
                                             is_batch_norm_and_training=is_batch_norm_and_training)

            for batched_args, in_dims, kwargs in generator:
                vmapped_op = vmap(op, in_dims)
                fn, primals = normalize_op_input_output2(vmapped_op, batched_args, kwargs,
                                                         sample.output_process_fn_grad)
                result = fn(*primals)
                cotangents = tree_map(lambda x: torch.randn_like(x), result)

                _, vjp_fn = vjp(fn, *primals)
                result_vjps = vjp_fn(cotangents)

                _, vjp_fn = ref_vjp(fn, *primals)
                expected_vjps = vjp_fn(cotangents)

                self.assertEqual(result_vjps, expected_vjps)

    def _compare_jacobians_of_vjp(self, fn, cotangents_and_primals, argnums=None, atol_rtol=None):
        if argnums is None:
            argnums = tuple(range(len(cotangents_and_primals)))

        def get_vjp(cotangents, *primals):
            _, vjp_fn = vjp(fn, *primals)
            return vjp_fn(cotangents)

        jacobian_jvp = jacfwd(get_vjp, argnums)(*cotangents_and_primals)
        jacobian_vjp = jacrev(get_vjp, argnums)(*cotangents_and_primals)

        # For dtype changing operations, the jacobians have different dtype.
        jacobian_jvp = tree_map(lambda x: x.to(torch.float), jacobian_jvp)
        jacobian_vjp = tree_map(lambda x: x.to(torch.float), jacobian_vjp)

        if atol_rtol is not None:
            (atol, rtol) = atol_rtol
            self.assertEqual(jacobian_jvp, jacobian_vjp, atol=atol, rtol=rtol)
        else:
            self.assertEqual(jacobian_jvp, jacobian_vjp)

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @skipOps('TestOperators', 'test_jvpvjp', vjp_fail.union({
        xfail('to_sparse', ''),  # NYI
        # RuntimeError: Trying to set a forward gradient that has a different size than that of the original Tensor,
        # this is not supported. Tensor is of size [5, 2, 3] while the given forward gradient is of size [1, 2, 3].
        xfail('normal', ''),
        xfail('cdist', ''),  # NYI: forward-AD for _cdist_forward
        xfail('cholesky', ''),  # NYI: forward-AD for cholesky
        xfail('logcumsumexp', ''),  # NYI: forward-AD for logcumsumexp
        xfail('nn.functional.embedding_bag', ''),  # NYI: forward-AD for _embedding_bag
        xfail('nn.functional.grid_sample', ''),  # NYI: forward AD for grid_sampler_2d
        xfail('nn.functional.hardsigmoid', ''),  # NYI: forward AD for hardsigmoid_backward
        xfail('nn.functional.huber_loss', ''),  # NYI: forward AD for huber_loss_backward
        xfail('nn.functional.logsigmoid', ''),  # not differentiable w.r.t. buffer
        xfail('renorm', ''),  # NYI: forward AD for renorm
        xfail('symeig', ''),  # NYI: forward AD for symeig
        xfail('nn.functional.multilabel_margin_loss', ''),  # NYI: multilabel_margin_loss_forward
        xfail('nn.functional.multilabel_soft_margin_loss', ''),  # NYI: log_sigmoid_backward
        xfail('nn.functional.soft_margin_loss', ''),  # NYI: forward-AD for log_sigmoid_backward
        xfail('nn.functional.ctc_loss', ''),  # NYI: forward-AD for _ctc_loss
        xfail('nn.functional.pdist', ''),  # NYI: forward-AD with _pdist_forward
        xfail('nn.functional.multi_margin_loss', ''),  # NYI: forward AD with multi_margin_loss
        skip('linalg.householder_product', '', device_type='cuda'),  # flaky, I'm not sure why
        xfail('sparse.sampled_addmm', ''),  # Sparse tensors have no strides
        skip('as_strided_scatter', ''),  # seems flaky
        xfail('segment_reduce', 'offsets'),  # NYI: forward-AD for segment_reduce
        xfail('index_reduce', ''),  # NYI: forward-AD for index_reduce
        xfail('segment_reduce', 'lengths'),  # NYI: forward-AD for segment_reduce
    }))
    @opsToleranceOverride('TestOperators', 'test_jvpvjp', (
        tol1('masked.prod',
             {torch.float32: tol(atol=1e-04, rtol=1.3e-05)}),
        tol1('masked.cumprod',
             {torch.float32: tol(atol=1e-04, rtol=1e-04)}),
        tol1('cumprod',
             {torch.float32: tol(atol=1e-04, rtol=1.3e-05)}, device_type='cuda'),
        tol1('linalg.vander',
             {torch.float32: tol(atol=1e-04, rtol=1.3e-05)}, device_type='cuda'),
    ))
    def test_jvpvjp(self, device, dtype, op):
        if not op.supports_autograd:
            self.skipTest("Skipped! Autograd not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        # TODO: test in-place
        if is_inplace(op, op.get_op()):
            self.skipTest("Skipped! NYI: inplace-testing not supported.")
            return

        for sample in samples:
            fn, primals = normalize_op_input_output(op, sample)
            result = fn(*primals)
            cotangents = tree_map(lambda x: torch.randn_like(x), result)

            primals_tangents = tree_map(lambda x: torch.randn_like(x), primals)
            cotangents_tangents = tree_map(lambda x: torch.randn_like(x), cotangents)

            def push_vjp(primals, cotangents):
                _, vjp_fn = vjp(fn, *primals)
                return vjp_fn(cotangents)

            result = jvp(push_vjp, (primals, cotangents), (primals_tangents, cotangents_tangents))
            self.assertEqual(len(result), 2)

            def tree_map2(fn, first, second):
                flat_first, spec_first = tree_flatten(first)
                flat_second, spec_second = tree_flatten(second)
                assert spec_first == spec_second
                flat_result = [fn(f, s) for f, s in zip(flat_first, flat_second)]
                return tree_unflatten(flat_result, spec_first)

            def reference(primals, cotangents, primals_tangents, cotangents_tangents):
                with fwAD.dual_level():
                    primal_duals = tree_map2(fwAD.make_dual, primals, primals_tangents)
                    _, vjp_fn = ref_vjp(fn, *primal_duals)

                    cotangent_duals = tree_map2(fwAD.make_dual, cotangents, cotangents_tangents)
                    result = vjp_fn(cotangent_duals)

                    flat_result, spec = tree_flatten(result)
                    primals_out, tangents_out = zip(*[fwAD.unpack_dual(r) for r in flat_result])
                    tangents_out = [t if t is not None else torch.zeros_like(p)
                                    for p, t in zip(primals_out, tangents_out)]
                    expected = (tree_unflatten(primals_out, spec), tree_unflatten(tangents_out, spec))
                return expected

            expected = reference(primals, cotangents, primals_tangents, cotangents_tangents)
            self.assertEqual(result, expected)

    @skipOps('TestOperators', 'test_vmapjvpvjp', vjp_fail.union({
        # Following operatos take too long, hence skipped
        skip('atleast_1d'),
        skip('atleast_2d'),
        skip('atleast_3d'),
        skip('meshgrid', 'list_of_tensors'),
        skip('meshgrid', 'variadic_tensors'),
        skip('broadcast_tensors'),
        skip('linalg.lstsq'),
        skip('nn.functional.bilinear'),
        skip('native_layer_norm'),

        # Potential bugs/errors
        xfail('as_strided'),  # AssertionError: Tensor-likes are not close!
        xfail('as_strided_scatter'),  # AssertionError: Tensor-likes are not close!
        xfail('bernoulli'),  # calls random op
        xfail('bfloat16'),  # required rank 4 tensor to use channels_last format
        xfail('cdist'),  # Forward AD not implemented and no decomposition
        xfail('chalf'),  # required rank 4 tensor to use channels_last format
        xfail('cholesky'),  # Forward AD not implemented and no decomposition
        xfail('double'),  # required rank 4 tensor to use channels_last format
        xfail('float'),  # required rank 4 tensor to use channels_last format
        xfail('half'),  # required rank 4 tensor to use channels_last format
        xfail('index_reduce'),  # Forward AD not implemented and no decomposition
        xfail('linalg.eig'),  # vmap over torch.allclose isn't supported yet.
        # AssertionError: Tensor-likes are not close!
        # Mismatched elements: 2 / 120 (1.7%)
        # Greatest absolute difference: 0.09438323974609375
        # Greatest relative difference: 0.00115722746596277
        xfail('linalg.householder_product', device_type='cuda'),
        xfail('logcumsumexp'),  # Forward AD not implemented and no decomposition
        xfail('mvlgamma', 'mvlgamma_p_1'),  # vmap: inplace into a regular tensor
        xfail('mvlgamma', 'mvlgamma_p_3'),  # vmap: inplace into a regular tensor
        xfail('mvlgamma', 'mvlgamma_p_5'),  # vmap: inplace into a regular tensor
        xfail('nanquantile'),  # Batching rule not implemented for aten::equal
        # RuntimeError: Batch norm got a batched tensor as input while the
        # running_mean or running_var, which will be updated in place,
        # were not batched.
        xfail('nn.functional.batch_norm'),
        xfail('nn.functional.batch_norm', 'without_cudnn'),
        xfail('nn.functional.binary_cross_entropy'),  # vmap: inplace into a regular tensor
        xfail("nn.functional.ctc_loss"),  # ForwardAD not implemented and no decomposition
        xfail('nn.functional.dropout2d'),  # calls random op
        xfail('nn.functional.dropout3d'),  # calls random op
        xfail('nn.functional.dropout'),  # calls random op
        skip('nn.functional._scaled_dot_product_attention'),  # randomness
        xfail('nn.functional.embedding_bag'),  # Forward AD not implemented and no decomposition
        xfail('nn.functional.feature_alpha_dropout', 'with_train'),  # calls random op
        xfail('nn.functional.fractional_max_pool2d'),  # calls random op
        xfail('nn.functional.fractional_max_pool3d'),  # calls random op
        xfail('nn.functional.gaussian_nll_loss'),  # data depenedant flow
        xfail('nn.functional.grid_sample'),  # Forward AD not implemented and no decomposition
        xfail('nn.functional.hardsigmoid'),  # Forward AD not implemented and no decomposition
        xfail('nn.functional.hinge_embedding_loss'),  # vmap: inplace into a regular tensor
        xfail('nn.functional.huber_loss'),  # Forward AD not implemented and no decomposition
        # RuntimeError: Batch norm got a batched tensor as input while the
        # running_mean or running_var, which will be updated in place,
        # were not batched.
        xfail('nn.functional.instance_norm'),
        xfail('nn.functional.logsigmoid'),  # Forward AD not implemented and no decomposition
        # NYI: Tensor.clone(memory_format) inside vmap is only supported with
        # memory_format torch.preserve_format or torch.contiguous_format (got ChannelsLast)
        xfail('nn.functional.max_unpool2d'),
        xfail('nn.functional.max_unpool2d', 'grad'),
        xfail('nn.functional.multi_margin_loss'),  # Forward AD not implemented and no decomposition
        xfail('nn.functional.multilabel_margin_loss'),  # Forward AD not implemented and no decomposition
        xfail('nn.functional.multilabel_soft_margin_loss'),  # Forward AD not implemented and no decomposition
        xfail('nn.functional.pdist'),  # Forward AD not implemented and no decomposition
        xfail('nn.functional.rrelu'),  # vmap: we do not yet support aten::rrelu_with_noise.
        xfail('nn.functional.soft_margin_loss'),  # Forward AD not implemented and no decomposition
        xfail('normal'),  # calls random op
        xfail('normal', 'number_mean'),  # calls random op
        xfail('pca_lowrank'),  # calls random op
        xfail('quantile'),  # Batching rule not implemented for aten::equal
        xfail('renorm'),  # Forward AD not implemented and no decomposition
        xfail('scatter_reduce', 'prod'),  # Forward AD not implemented and no decomposition
        xfail('segment_reduce', 'lengths'),  # Forward AD not implemented and no decomposition
        xfail('segment_reduce', 'offsets'),  # Forward AD not implemented and no decomposition
        xfail('sparse.sampled_addmm'),  # RuntimeError: Sparse CSR tensors do not have strides
        xfail('svd_lowrank'),  # calls random op
        xfail('symeig'),  # Forward AD not implemented and no decomposition
        xfail('take'),  # vmap: inplace into regular tensor
        xfail('to'),  # RuntimeError: required rank 4 tensor to use channels_last format
        xfail('to_sparse'),  # Forward AD not implemented and no decomposition
        xfail('view_as_complex'),  # RuntimeError: Tensor must have a last dimension with stride 1
        # RuntimeError: Batch norm got a batched tensor as
        # input while the running_mean or running_var, which will be updated in
        # place, were not batched.
        xfail("native_batch_norm"),
    }))
    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
    @opsToleranceOverride('TestOperators', 'test_vmapjvpvjp', (
        tol1('linalg.svd',
             {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
        tol1('linalg.householder_product',
             {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
        tol1('linalg.multi_dot',
             {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
        tol1('svd',
             {torch.float32: tol(atol=5e-04, rtol=5e-04)}),
    ))
    def test_vmapjvpvjp(self, device, dtype, op):
        # Since we test `jvpvjp` seperately,
        # in this we just check that vmap of `jvpvjp`
        # is correct.
        if not op.supports_autograd:
            self.skipTest("Skipped! Autograd not supported.")
            return

        samples = op.sample_inputs(device, dtype, requires_grad=True)

        # TODO: test in-place
        if is_inplace(op, op.get_op()):
            self.skipTest("Skipped! NYI: inplace-testing not supported.")
            return

        for sample in samples:
            fn, primals = normalize_op_input_output(op, sample)
            result = fn(*primals)
            cotangents = tree_map(lambda x: torch.randn_like(x), result)

            primals_tangents = tree_map(lambda x: torch.randn_like(x), primals)
            cotangents_tangents = tree_map(lambda x: torch.randn_like(x), cotangents)

            def push_vjp(primals, cotangents):
                _, vjp_fn = vjp(fn, *primals)
                return vjp_fn(cotangents)

            args, spec = tree_flatten(((primals, cotangents), (primals_tangents, cotangents_tangents)))

            def jvp_of_vjp(*args):
                (primals, tangents) = tree_unflatten(args, spec)
                primals_out, tangents_out = jvp(push_vjp, primals, tangents)

                flat_primals_out, _ = tree_flatten(primals_out)
                flat_tangents_out, _ = tree_flatten(tangents_out)
                return tuple(flat_primals_out + flat_tangents_out)

            is_batch_norm_and_training = is_batch_norm_training(op, sample.kwargs)
            generator = get_fallback_and_vmap_exhaustive(
                jvp_of_vjp, args, {}, is_batch_norm_and_training=is_batch_norm_and_training)
            for loop_out, batched_out in generator:
                self.assertEqual(loop_out, batched_out)


    def _make_extremal_inputs(self, shape, device):
        if shape is None:
            return (None,)
        return (
            torch.full(shape, -1000., device=device),
            torch.zeros(shape, device=device),
            torch.full(shape, 1000., device=device),
        )

    def _arg_and_kwarg_options(self, args_options, kwargs_options):
        return itertools.product(*args_options, kwargs_options)

    def test_extremal_numerics_nll_loss(self, device):
        N, C = 3, 4
        d1, d2, d3 = 5, 6, 7
        shapes = (
            ((N, C), (N,), (C,)),
            ((N, C), (N,), None),
            ((N, C, d1, d2, d3), (N, d1, d2, d3), (C,)),
            ((N, C, d1, d2, d3), (N, d1, d2, d3), None),
        )
        kwargs_options = ({'ignore_index': 0, 'reduction': 'mean'}, {'reduction': 'sum'}, {'reduction': 'none'}, {})
        for input_shape, target_shape, weight_shape in shapes:
            input_options = self._make_extremal_inputs(input_shape, device)
            for input, kwargs in self._arg_and_kwarg_options((input_options,), kwargs_options):
                if weight_shape is None:
                    weight = None
                else:
                    weight = torch.randn(weight_shape, device=device)
                target = torch.randint(0, C, target_shape, device=device)
                target[0] = 1  # since we're ignoring index 0, at least one element must be non-zero

                fn = functools.partial(torch.nn.functional.nll_loss, target=target, weight=weight, **kwargs)
                result = fn(input)
                cotangents = torch.randn_like(result, device=device)
                self._compare_jacobians_of_vjp(fn, (cotangents, input))

    def test_extremal_numerics_l1_loss(self, device):
        N, C, H, W = 3, 4, 5, 6
        shapes = ((N, C), (N, C, H), (N, C, H, W))
        kwargs_options = ({'reduction': 'sum'}, {'reduction': 'none'}, {})
        for shape in shapes:
            input_options = self._make_extremal_inputs(shape, device)
            target_options = self._make_extremal_inputs(shape, device)
            for input, target, kwargs in self._arg_and_kwarg_options((input_options, target_options), kwargs_options):
                result = torch.nn.functional.l1_loss(input, target)
                cotangents = torch.randn_like(result, device=device)
                self._compare_jacobians_of_vjp(torch.nn.functional.l1_loss, (cotangents, input, target))

    def test_extremal_numerics_mse_loss(self, device):
        N, C, H, W = 3, 4, 5, 6
        shapes = ((N, C), (N, C, H), (N, C, H, W))
        kwargs_options = ({'reduction': 'sum'}, {'reduction': 'none'}, {})
        for shape in shapes:
            input_options = self._make_extremal_inputs(shape, device)
            target_options = self._make_extremal_inputs(shape, device)
            for input, target, kwargs in self._arg_and_kwarg_options((input_options, target_options), kwargs_options):
                result = torch.nn.functional.mse_loss(input, target)
                cotangents = torch.randn_like(result, device=device)
                self._compare_jacobians_of_vjp(torch.nn.functional.mse_loss, (cotangents, input, target))

    def test_extremal_numerics_softmax(self, device):
        N, C, H, W = 3, 4, 5, 6
        shapes = ((N, C), (N, C, H), (N, C, H, W))
        kwargs_options = ({'dim': 1}, {})
        for shape in shapes:
            input_options = self._make_extremal_inputs(shape, device)
            for input, kwargs in self._arg_and_kwarg_options((input_options,), kwargs_options):
                result = torch.nn.functional.softmax(input)
                cotangents = torch.randn_like(result, device=device)
                self._compare_jacobians_of_vjp(torch.nn.functional.softmax, (cotangents, input))


    def test_extremal_numerics_log_softmax(self, device):
        N, C, H, W = 3, 4, 5, 6
        shapes = ((N, C), (N, C, H), (N, C, H, W))
        kwargs_options = ({'dim': 1}, {})
        for shape in shapes:
            input_options = self._make_extremal_inputs(shape, device)
            for input, kwargs in self._arg_and_kwarg_options((input_options,), kwargs_options):
                result = torch.nn.functional.log_softmax(input)
                cotangents = torch.randn_like(result, device=device)
                self._compare_jacobians_of_vjp(torch.nn.functional.log_softmax, (cotangents, input))

    def test_extremal_numerics_cross_entropy(self, device):
        N, C = 3, 4
        d1, d2, d3 = 5, 6, 7
        shapes = (
            ((N, C), (N,), (C,)),
            ((N, C), (N,), None),
            ((N, C), (N, C), (C,)),
            ((N, C), (N, C), None),
            ((C,), (), (C,)),
            ((C,), (), None),
            ((C,), (C,), (C,)),
            ((C,), (C,), None),
            ((N, C, d1, d2, d3), (N, d1, d2, d3), (C,)),
            ((N, C, d1, d2, d3), (N, d1, d2, d3), None),
            ((N, C, d1, d2, d3), (N, C, d1, d2, d3), (C,)),
            ((N, C, d1, d2, d3), (N, C, d1, d2, d3), None),
        )
        for input_shape, target_shape, weight_shape in shapes:
            input_options = self._make_extremal_inputs(input_shape, device)
            kwargs_options = [{'reduction': 'sum'}, {'reduction': 'none'}, {}]
            if input_shape != target_shape:
                kwargs_options.append({'ignore_index': 0, 'reduction': 'mean'})

            for input, kwargs in self._arg_and_kwarg_options((input_options,), kwargs_options):
                if weight_shape is None:
                    weight = None
                else:
                    weight = torch.randn(weight_shape, device=device)

                if input_shape == target_shape:
                    target = torch.rand(target_shape, device=device)
                elif len(target_shape) == 0:
                    target = torch.tensor(1, device=device)  # must be non-zero since ignore_index may be 0
                else:
                    target = torch.randint(0, C, target_shape, device=device)

                fn = functools.partial(torch.nn.functional.cross_entropy, target=target, weight=weight, **kwargs)
                result = fn(input)
                cotangents = torch.randn_like(result, device=device)
                self._compare_jacobians_of_vjp(fn, (cotangents, input), atol_rtol=(1e-4, 1e-5))

    def test_extremal_numerics_binary_cross_entropy(self, device):
        N, C, H, W = 3, 4, 5, 6
        shapes = ((N, C), (N, C, H), (N, C, H, W))
        for shape in shapes:
            weight_options = self._make_extremal_inputs(shape, device)
            kwargs_options = [{'reduction': 'sum'}, {'reduction': 'none'}, {}]

            for weight, kwargs in self._arg_and_kwarg_options((weight_options,), kwargs_options):
                input = torch.rand(shape, device=device)
                target = torch.rand(shape, device=device)
                fn = functools.partial(torch.nn.functional.binary_cross_entropy, target=target, weight=weight, **kwargs)
                result = fn(input)
                cotangents = torch.randn_like(result, device=device)
                self._compare_jacobians_of_vjp(fn, (cotangents, input), atol_rtol=(1e-4, 2e-5))

    def test_extremal_numerics_layer_norm(self, device):
        N, C, H, W = 3, 4, 5, 6
        shapes = ((N, C), (N, C, H), (N, C, H, W))
        for shape in shapes:
            input_options = self._make_extremal_inputs(shape, device)
            normalized_shape = shape[1:]
            weight_options = self._make_extremal_inputs(normalized_shape, device)
            bias_options = self._make_extremal_inputs(normalized_shape, device)

            for input, bias, weight in self._arg_and_kwarg_options((input_options, bias_options, weight_options), ()):
                def fn(input, weight, bias):
                    return torch.nn.functional.layer_norm(input, normalized_shape, weight=weight, bias=bias)
                result = fn(input, weight, bias)
                cotangents = torch.randn_like(result, device=device)
                self._compare_jacobians_of_vjp(fn, (cotangents, input, weight, bias))

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float32, torch.double))
    @skipOps('TestOperators', 'test_vmap_autograd_grad', {
        xfail('linalg.eig'),  # all close?
        # The size of tensor a (4) must match the size of tensor b (10) at non-singleton dimension 0
        xfail('masked_select'),
        xfail('nn.functional.max_unpool2d', 'grad'),  # contiguous call
        xfail('nn.functional.max_unpool2d'),  # contiguous call
        xfail('to_sparse'),  # dispatch key issue

        # numerical inconsistencies, look like bugs
        skip('matrix_exp', dtypes=(torch.float32,), device_type='cuda'),  # fails on linux, passes on windows
        skip('ldexp', dtypes=(torch.float32,), device_type='cpu'),  # fails on all but mac
        skip('__rmatmul__'),  # flaky needs investigation
        skip('matmul'),  # flaky needs investigation
        skip('nn.functional.conv_transpose3d'),  # flaky needs investigation
        skip('nn.functional.conv_transpose2d'),  # flaky needs investigation
        skip('nn.functional.conv_transpose1d'),  # flaky needs investigation
        skip('nn.functional.layer_norm', dtypes=(torch.float32,), device_type='cpu'),  # fails on windows
        skip('linalg.lu_factor', dtypes=(torch.float32,), device_type='cuda'),  # fails on all but windows
        skip('linalg.lu_factor_ex', dtypes=(torch.float32,), device_type='cuda'),  # fails on all but windows
        skip('linalg.multi_dot', '', device_type='cpu'),
        skip('sparse.sampled_addmm', ''),
        skip('native_layer_norm', '', device_type='cpu'),
        xfail('as_strided_scatter', ''),
    })
    @opsToleranceOverride('TestOperators', 'test_vmap_autograd_grad', (
        tol1('linalg.householder_product',
             {torch.float32: tol(atol=5e-04, rtol=9e-03)}, device_type='cuda'),
        tol1('linalg.householder_product',
             {torch.float32: tol(atol=1e-04, rtol=1e-04)}, device_type='cpu'),
    ))
    def test_vmap_autograd_grad(self, device, dtype, op):
        def is_differentiable(inp):
            return isinstance(inp, Tensor) and (inp.grad_fn is not None or inp.requires_grad)

        def get_flat_differentiable(pytree):
            flattened = tree_flatten(pytree)[0]
            return tuple(i for i in flattened if is_differentiable(i))

        def get_differentiable_linked(list1, list2):
            paired_list = zip(list1, list2)
            paired_list = tuple((first, second) for (first, second) in paired_list if is_differentiable(first))
            return zip(*paired_list)

        def filter_none(out):
            flattened = tree_flatten(out)[0]
            return tuple(o for o in flattened if o is not None)

        if not op.supports_autograd:
            self.skipTest("Skipped! Autograd not supported.")
            return

        sample_inputs = op.sample_inputs(device, dtype, requires_grad=True)

        for sample_input in sample_inputs:
            fn, primals = normalize_op_input_output(op, sample_input)
            out = fn(*primals)
            cotangents = tree_map(torch.randn_like, out)

            def compute_grad(cotangents):
                out_flattened = out
                cotangents_flattened = cotangents
                if not isinstance(out_flattened, torch.Tensor):
                    out_flattened = tree_flatten(out)[0]
                    cotangents_flattened = tree_flatten(cotangents)[0]
                    out_flattened, cotangents_flattened = get_differentiable_linked(out_flattened, cotangents_flattened)

                return filter_none(
                    torch.autograd.grad(out_flattened, get_flat_differentiable(primals), cotangents_flattened,
                                        retain_graph=True, allow_unused=True))

            is_batch_norm_and_training = is_batch_norm_training(op, sample_input.kwargs)
            generator = get_fallback_and_vmap_exhaustive(
                compute_grad, (cotangents,), {}, is_batch_norm_and_training=is_batch_norm_and_training)
            for loop_out, batched_out in generator:
                self.assertEqual(loop_out, batched_out)

    def test_vmapvmapjvp_linalg_solve(self):
        ops = [op for op in op_db if op.name == "linalg.solve"]
        assert len(ops) > 0

        # this specializes a lot of code from the get_fallback_and_vmap_exhaustive test. If we need this more
        # generally, this could go for a refactor

        B0 = 2
        B1 = 3

        # we want to check the case where A will be seen as contiguous by jvp but during the vmap calls will become
        # non-contiguous because vmap will expand. This will happen during both levels of vmap
        A = torch.randn(4, 4)
        k = torch.randn(4, 5, B1, B0)
        fn, args = get_jvp_variant_primals_tangents(torch.linalg.solve, SampleInput(A, args=(k,)))

        in_dims_all = (None, -1, None, -1)
        batched_out = vmap(vmap(fn, in_dims=in_dims_all), in_dims=in_dims_all)(*args)
        loop_out = loop2(fn, in_dims_all, in_dims_all, 0, 0, B0, B1, *args)
        self.assertEqual(loop_out, batched_out)

    @ops(filter(lambda op: op.name in aliasing_ops, op_db + additional_op_db), allowed_dtypes=(torch.float,))
    @parametrize("grad_op", ["jvp", "vjp"])
    def test_view_then_inplace(self, device, dtype, op, grad_op):
        for sample_input in op.sample_inputs(device, dtype):
            def f(x):
                op(sample_input.input, *sample_input.args, **sample_input.kwargs).copy_(x)
                return x

            without_grad = op(sample_input.input, *sample_input.args, **sample_input.kwargs)
            if grad_op == "jvp":
                with self.assertRaisesRegex(RuntimeError, "During a grad .* attempted to call in-place operation"):
                    jvp(f, (torch.randn_like(without_grad),), (torch.randn_like(without_grad),))
            else:
                assert grad_op == "vjp"
                with self.assertRaisesRegex(RuntimeError, "During a grad .* attempted to call in-place operation"):
                    vjp(f, torch.randn_like(without_grad))

    @ops(filter(lambda op: op.name in aliasing_ops_list_return, op_db + additional_op_db), allowed_dtypes=(torch.float,))
    @parametrize("grad_op", ["jvp", "vjp"])
    def test_view_then_inplace_list_return(self, device, dtype, op, grad_op):
        for sample_input in op.sample_inputs(device, dtype):
            def f(x):
                op(sample_input.input, *sample_input.args, **sample_input.kwargs)[0].copy_(x)
                return x

            without_grad = op(sample_input.input, *sample_input.args, **sample_input.kwargs)[0]
            with self.assertRaisesRegex(RuntimeError, "During a grad .* attempted to call in-place operation"):
                if grad_op == "jvp":
                    jvp(f, (torch.randn_like(without_grad),), (torch.randn_like(without_grad),))
                else:
                    assert grad_op == "vjp"
                    vjp(f, torch.randn_like(without_grad))

    @parametrize("grad_op", ["jvp", "vjp"])
    def test_view_then_inplace_special(self, grad_op):
        # some things in __getitem__ use at::index, which doesn't alias, so this tests a subset of them that do alias
        ops = [
            lambda x: x[0],
            lambda x: x[0, 0, 0],
            lambda x: x[:1],
            lambda x: x[:, :1],
            lambda x: x[:, :1, :],
        ]

        for op in ops:
            def f(x):
                op(captured).copy_(x)
                return x

            captured = torch.randn(4, 3, 3)
            without_grad = op(captured)
            if grad_op == "jvp":
                with self.assertRaisesRegex(RuntimeError, "During a grad .* attempted to call in-place operation"):
                    jvp(f, (torch.randn_like(without_grad),), (torch.randn_like(without_grad),))
            else:
                assert grad_op == "vjp"
                with self.assertRaisesRegex(RuntimeError, "During a grad .* attempted to call in-place operation"):
                    vjp(f, torch.randn_like(without_grad))

only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestOperators, globals(), only_for=only_for)

if __name__ == '__main__':
    run_tests()