File: test_vmap.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (4562 lines) | stat: -rw-r--r-- 186,002 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
# Owner(s): ["module: functorch"]

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from typing import OrderedDict
from unittest.case import skipIf
from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import torch.nn.functional as F
from torch import Tensor
import functools
import itertools
import warnings
import unittest
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_device_type import instantiate_device_type_tests, \
    skipCUDAIfNoMagma
from torch.testing._internal.common_device_type import ops
from torch.testing._internal.common_utils import (
    parametrize,
    instantiate_parametrized_tests,
    subtest
)
from torch.testing._internal.common_device_type import \
    toleranceOverride, tol
from functorch_additional_op_db import additional_op_db
from common_utils import (
    get_fallback_and_vmap_exhaustive,
    xfail,
    skip,
    skipOps,
    check_vmap_fallback,
    tol1,
    opsToleranceOverride,
    is_batch_norm_training,
    generate_vmap_inputs,
    compute_quantities_for_vmap_test,
    is_valid_inplace_sample_input,
)
import types
from collections import namedtuple

import functorch
from functorch import vmap, grad, grad_and_value, jvp, vjp, jacfwd
from functorch.experimental import chunk_vmap
from torch._C._functorch import reshape_dim_into, reshape_dim_outof
from functorch._src.make_functional import functional_init_with_buffers

FALLBACK_REGEX = 'There is a performance drop'


class EnableVmapFallbackWarnings:
    def __enter__(self):
        self.prev_state = torch._C._debug_only_are_vmap_fallback_warnings_enabled()
        torch._C._debug_only_display_vmap_fallback_warnings(True)

    def __exit__(self, *ignored):
        torch._C._debug_only_display_vmap_fallback_warnings(self.prev_state)


class TestVmapAPI(TestCase):
    def test_non_tensor_output_raises(self):
        with self.assertRaisesRegex(ValueError, "got type <class 'float'> as a return"):
            vmap(lambda x: 3.14)(torch.ones(3))

        def multiple_outputs(x):
            return x, 3

        with self.assertRaisesRegex(ValueError, "got type <class 'int'> as a return"):
            vmap(multiple_outputs)(torch.ones(3))

    def test_different_map_dim_size_raises(self):
        x = torch.randn(2)
        y = torch.randn(3)
        expected_msg = 'Expected all tensors to have the same size in the mapped dimension'
        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(torch.mul)(x, y)
        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y})

    def test_func_with_no_inputs(self):
        expected_msg = 'got no inputs'

        def foo():
            return torch.randn(3)

        def bar(x):
            return torch.randn(3)

        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(foo)()

        with self.assertRaisesRegex(ValueError, expected_msg):
            vmap(bar)()

    def test_func_with_no_tensors(self):
        def foo(x):
            return torch.randn(3)

        with self.assertRaisesRegex(ValueError, 'at least one Tensor'):
            vmap(foo, (None,))(1)

    def test_constant_function(self):
        output = vmap(lambda x: torch.tensor(3.14))(torch.ones(3))
        self.assertEqual(output, torch.tensor([3.14, 3.14, 3.14]))

    def test_single_input(self):
        x = torch.randn(2, 3)

        def square(x):
            return x * x

        output = vmap(square)(x)
        self.assertEqual(output, x * x)

    def test_multiple_inputs(self):
        x = torch.randn(2, 3)
        y = torch.randn(2, 3)
        output = vmap(torch.mul)(x, y)
        self.assertEqual(output, x * y)

    def test_multiple_outputs(self):
        def foo(x):
            return x * x, x * x * x

        x = torch.randn(3)
        outputs = vmap(foo)(x)
        self.assertEqual(outputs[0], x * x)
        self.assertEqual(outputs[1], x * x * x)

    def test_multiple_outputs2(self):
        # This is the same thing as
        # def returns_tuple_of_tensors(x):
        #     return x, x
        def returns_tuple_of_tensors(x):
            return (x, x)

        def returns_list_of_two_tensors(x):
            return [x, x]

        def returns_list_of_one_tensor(x):
            return [x]

        x = torch.randn(3)

        # should not throw
        vmap(returns_tuple_of_tensors)(x)
        vmap(returns_list_of_two_tensors)(x)
        vmap(returns_list_of_one_tensor)(x)

    def test_nested_with_same_map_dim(self):
        x = torch.randn(2, 3, 5)
        y = torch.randn(2, 3, 5)
        output = vmap(vmap(torch.mul))(x, y)
        self.assertEqual(output, x * y)

        output = vmap(vmap(vmap(torch.mul)))(x, y)
        self.assertEqual(output, x * y)

    def test_nested_with_diag_embed(self):
        # diag_embed requires special testing because it is registered with conditional functionalization.
        x = torch.randn(3, 3, 5)
        output = vmap(vmap(torch.diag_embed))(x)
        self.assertEqual(output, torch.diag_embed(x))

    def test_nested_with_different_map_dim(self):
        x = torch.randn(2, 3)
        y = torch.randn(5, 3)
        output = vmap(lambda x: vmap(lambda y: x * y)(y))(x)
        self.assertEqual(output.shape, (2, 5, 3))
        self.assertEqual(output, x.view(2, 1, 3) * y)

        z = torch.randn(7, 3)
        output = vmap(lambda x: vmap(lambda y: vmap(lambda z: x * y * z)(z))(y))(x)
        self.assertEqual(output.shape, (2, 5, 7, 3))
        self.assertEqual(output, x.view(2, 1, 1, 3) * y.view(5, 1, 3) * z)

    def test_noop_in_inner_vmap(self):
        x = torch.randn(3)
        y = torch.randn(5)
        output = vmap(lambda x: vmap(lambda y: x)(y))(x)
        self.assertEqual(output, x.view(3, 1).expand(3, 5))

    def test_unsupported_op_err_msg(self):
        # Unsupported view op
        tensor = torch.randn(2, 3)
        msg = (
            r"Batching rule not implemented for aten::.+; the "
            r"fallback path doesn't work on out= or view ops"
        )
        # TODO: find a view op
        # with self.assertRaisesRegex(RuntimeError, msg):
        #     vmap(torch.ravel)(tensor)

        def out_op(x, y):
            return torch.abs(x, out=y)

        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(out_op)(tensor, tensor)

        # Don't support non-tensor returns. This is a limitation of vmap;
        # functions that don't return tensors must be special cased
        with self.assertRaisesRegex(RuntimeError, 'Batching rule not implemented'):
            vmap(torch.equal)(tensor, tensor)

    def test_nonzero_out_dims(self):
        # Basic test
        tensor = torch.randn(2, 3)
        result = vmap(lambda x: x, out_dims=1)(tensor)
        self.assertEqual(result, tensor.permute(1, 0))
        self.assertEqual(result.data_ptr(), tensor.data_ptr())

        # Test that the batch dimension gets permuted to dim 2
        tensor = torch.randn(2, 3, 5, 7)
        result = vmap(lambda x: x, out_dims=2)(tensor)
        self.assertEqual(result, tensor.permute(1, 2, 0, 3))
        self.assertEqual(result.data_ptr(), tensor.data_ptr())

        # negative out_dim
        tensor = torch.randn(2, 3, 5, 7)
        result = vmap(lambda x: x, out_dims=-1)(tensor)
        self.assertEqual(result, tensor.permute(1, 2, 3, 0))
        self.assertEqual(result.data_ptr(), tensor.data_ptr())

        # check that out_dims works on ALL outputs
        tensor = torch.randn(2, 3, 5, 7)
        other = torch.randn(2, 3, 5, 7)
        result = vmap(lambda x, y: (x, y), out_dims=2)(tensor, other)
        self.assertEqual(result, (tensor.permute(1, 2, 0, 3), other.permute(1, 2, 0, 3)))

        # use out_dims with the maximum vmap-able tensor dims (64 dims)
        ndims = 64
        shape = [2] + [1] * (ndims - 1)
        expected_shape = [1, 1, 2] + [1] * (ndims - 3)
        tensor = torch.randn(shape)
        result = vmap(lambda x: x, out_dims=2)(tensor)
        self.assertEqual(result.shape, expected_shape)

        # test something that is not the identity function
        def foo(x, y):
            return x, x * y, x * y * y
        x = torch.randn(2, 3, 5)
        y = torch.randn(2, 3, 5)
        result = vmap(foo, out_dims=1)(x, y)
        self.assertEqual(
            result,
            (x.permute(1, 0, 2), (x * y).permute(1, 0, 2), (x * y * y).permute(1, 0, 2)))

    def test_multiple_out_dims(self):
        def foo(x):
            return x, x

        def bar(x, y):
            return x, x, x, x * y

        x = torch.randn(2, 3, 5)
        y = torch.randn(2, 3, 5)
        result = vmap(foo, out_dims=(0, 1))(x)
        self.assertEqual(result, (x, x.permute(1, 0, 2)))

        result = vmap(bar, out_dims=(-1, 0, 1, 2))(x, y)
        expected = (
            x.permute(1, 2, 0),
            x,
            x.permute(1, 0, 2),
            (x * y).permute(1, 2, 0),
        )
        self.assertEqual(result, expected)

    def test_nested_out_dims(self):
        y = torch.randn(2, 3, 5, 7)

        # Inner vmap has non-zero out_dim
        result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y))(y)
        self.assertEqual(result.shape, (2, 5, 3, 7))
        self.assertEqual(result, y.permute(0, 2, 1, 3))

        # all vmaps have non-zero out_dim
        result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y), out_dims=1)(y)
        self.assertEqual(result.shape, (5, 2, 3, 7))
        self.assertEqual(result, y.permute(2, 0, 1, 3))

        # throwing in some negative out_dims
        result = vmap(lambda y: vmap(lambda x: x, out_dims=-1)(y), out_dims=-1)(y)
        self.assertEqual(result.shape, (5, 7, 3, 2))
        self.assertEqual(result, y.permute(2, 3, 1, 0))

        # testing fn that isn't the identity
        x = torch.randn(2, 3)
        y = torch.randn(5, 3)
        result = vmap(lambda y: vmap(lambda x: x * y, out_dims=1)(x), out_dims=-1)(y)
        self.assertEqual(result.shape, (3, 2, 5))
        self.assertEqual(result, (y.view(5, 1, 3) * x).permute(2, 1, 0))

    def test_out_dims_edge_case(self):
        def foo(x):
            return x

        # Test that we accept out_dims=(1,) for a function with one output.
        tensor = torch.randn(2, 3)
        expected = vmap(foo, out_dims=1)(tensor)
        result = vmap(foo, out_dims=(1,))(tensor)
        self.assertEqual(result, expected)

    def test_pytree_returns(self):
        x = torch.randn(2, 3)

        def f(x):
            y = x.sin()
            return y, (y, y), [y, (y, y)]

        y0, (y1, y2), (y3, (y4, y5)) = vmap(f)(x)
        self.assertEqual(y0, x.sin())
        self.assertEqual(y0, y1)
        self.assertEqual(y2, y1)
        self.assertEqual(y2, y3)
        self.assertEqual(y4, y3)
        self.assertEqual(y5, y4)

    def test_pytree_odict_returns(self):
        x = torch.randn(2, 3)

        def f(t):
            y = t.sin()
            return OrderedDict([("sin", y), ("cos", t.cos())])

        out = vmap(f)(x)
        assert isinstance(out, OrderedDict)
        expected = f(x)
        self.assertEqual(out["sin"], expected["sin"])
        self.assertEqual(out["cos"], expected["cos"])

    def test_pytree_returns_outdims(self):
        x = torch.randn(2, 3)

        def f(x):
            y = x.sin()
            return y, (y, y)

        y0, (y1, y2) = vmap(f, out_dims=(0, (0, 1)))(x)
        self.assertEqual(y0, x.sin())
        self.assertEqual(y1, x.sin())
        self.assertEqual(y2, x.sin().t())

    def test_pytree_returns_broadcast_simple(self):
        x = torch.randn(2, 3)

        def f(x):
            y = x.sin()
            return y, (y, y)

        y0, (y1, y2) = vmap(f, out_dims=1)(x)
        self.assertEqual(y0, x.sin().t())
        self.assertEqual(y1, y0)
        self.assertEqual(y2, y0)

    def test_pytree_returns_broadcast_nested(self):
        x = torch.randn(2, 3)

        def f(x):
            y = x.sin()
            return y, (y, y)

        y0, (y1, y2) = vmap(f, out_dims=(0, 1))(x)
        self.assertEqual(y0, x.sin())
        self.assertEqual(y1, y0.t())
        self.assertEqual(y2, y0.t())

    def test_out_dims_must_be_int_or_collection_of_int_err_msg(self):
        msg = 'must be an int or a python collection of ints'
        tensor = torch.randn(2, 3)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims='lol')(tensor)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims=('lol',))(tensor)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims=None)(tensor)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims=(None,))(tensor)

    def test_out_dims_and_num_outputs_mismatch_err_msg(self):
        msg = 'not compatible'
        x = torch.randn(2, 3, 5)

        # Too many out_dims
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: x, out_dims=(0, 0))(x)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: (x, x, x), out_dims=(0, 0, 0, 0))(x)

        # Too few out_dims
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: (x, x), out_dims=(0,))(x)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda x: (x, x, x), out_dims=(0, 0))(x)

    def test_out_dim_out_of_bounds_err_msg(self):
        # TODO(rzou): This error message isn't that great. It comes straight
        # from maybe_wrap_dim. Consider doing a try-catch-(add some context) to
        # the error message in the future in C++
        msg = 'Dimension out of range'
        x = torch.randn(2, 3, 5)
        with self.assertRaisesRegex(IndexError, msg):
            vmap(lambda x: x, out_dims=3)(x)
        with self.assertRaisesRegex(IndexError, msg):
            vmap(lambda x: x, out_dims=-4)(x)

    def test_non_zero_in_dims(self):
        tensor = torch.randn(2, 3, 5)

        # Implicit out_dims = 0; vmap will move the batch dim to the front.
        output = vmap(lambda x: x, (1,))(tensor)
        self.assertEqual(output, tensor.permute(1, 0, 2))
        self.assertEqual(output.data_ptr(), tensor.data_ptr())

        x = torch.randn(2, 3)
        y = torch.randn(3, 2)
        output = vmap(torch.mul, (0, 1))(x, y)
        self.assertEqual(output, x * y.t())
        output = vmap(torch.mul, (1, 0))(x, y)
        self.assertEqual(output, x.t() * y)

    def test_none_in_dims(self):
        x = torch.randn(2, 3)
        y = torch.randn(2, 3)

        # None in_dim for a Tensor means we don't map over it
        output = vmap(torch.mul, (0, None))(x, y)
        self.assertEqual(output.shape, (2, 2, 3))
        self.assertEqual(output, x.view(2, 1, 3) * y)

        # None in_dim for non-tensor arguments
        output = vmap(torch.mul, (0, None))(x, 2)
        self.assertEqual(output, x * 2)

    def test_nested_non_default_in_dims(self):
        x = torch.rand(5, 2, 3)
        y = torch.rand(3, 5, 2)
        result = vmap(vmap(vmap(torch.mul), (1, 0)), (1, 2))(x, y)
        self.assertEqual(result, x.permute(1, 2, 0) * y.permute(2, 0, 1))

    def test_nested_negative_in_dims(self):
        x = torch.randn(2, 3)
        y = torch.randn(2, 3)
        output = vmap(torch.mul, (-1, -1))(x, y)
        self.assertEqual(output.shape, (3, 2))
        self.assertEqual(output, (x * y).permute(1, 0))

    def test_non_default_in_dims_out_dims(self):
        x = torch.randn(2, 3, 5)

        # Same in_dim as out_dim, vmap over identity
        result = vmap(lambda x: x, in_dims=1, out_dims=1)(x)
        self.assertEqual(result, x)
        self.assertEqual(result.data_ptr(), x.data_ptr())

        # Different in_dim from out_dim, vmap over identity
        result = vmap(lambda x: x, in_dims=2, out_dims=1)(x)
        self.assertEqual(result.shape, (2, 5, 3))
        self.assertEqual(result, x.transpose(1, 2))
        self.assertEqual(result.data_ptr(), x.data_ptr())

        def foo(x):
            return x * 2

        # Same in_dim as out_dim, vmap over operation
        result = vmap(foo, in_dims=1, out_dims=1)(x)
        self.assertEqual(result, x * 2)

        # Different in_dim as out_dim, vmap over operation
        result = vmap(foo, in_dims=2, out_dims=1)(x)
        self.assertEqual(result.shape, (2, 5, 3))
        self.assertEqual(result, (x * 2).transpose(1, 2))

        # Basic nested test.
        result = vmap(vmap(foo, 1, 1), 1, 1)(x)
        self.assertEqual(result, x * 2)

    def test_item_throws(self):
        def f(x):
            return x.item()

        with self.assertRaisesRegex(RuntimeError, r'item\(\) on a Tensor'):
            vmap(f)(torch.randn(3))

    def test_data_dependent_control_flow_throws(self):
        def f(x):
            if x:
                return x
            return 0

        with self.assertRaisesRegex(RuntimeError, r'data-dependent control flow'):
            vmap(f)(torch.randn(3))

    def test_accepts_nested_inputs(self):
        x = torch.randn(2, 3)
        y = torch.randn(2, 3)

        # Single layer of nesting
        out = vmap(lambda z: z[0] + z[1])((x, y))
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z[0] + z[1], in_dims=(0,))((x, y))
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
        self.assertEqual(out, x + y)

        out = vmap(lambda z: z[0] + z[1])([x, y])
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z[0] + z[1], in_dims=(0,))([x, y])
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, y])
        self.assertEqual(out, x + y)

        out = vmap(lambda z: z['x'] + z['y'])({'x': x, 'y': y})
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z['x'] + z['y'], in_dims=(0,))({'x': x, 'y': y})
        self.assertEqual(out, x + y)
        out = vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y})
        self.assertEqual(out, x + y)

        # Multiple layers of nesting
        out_fn = vmap(lambda z: z['x'][0] + z['x'][1][0] + z['y'][0] + z['y'][1])
        out = out_fn({'x': [x, (x,)], 'y': [y, y]})
        self.assertEqual(out, x + x + y + y)

    def test_in_dims_wrong_type_err_msg(self):
        x = torch.randn(3)
        y = torch.randn(3)
        msg = r'expected `in_dims` to be int or a \(potentially nested\) tuple'
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, [0, 0])(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, set({0, 0}))(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, 'lol')(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=[0, 0])([x, y])
        # The following should not throw
        vmap(torch.mul, (0, 0))(x, y)

    def test_not_enough_in_dims_err_msg(self):
        x = torch.randn(3)
        y = torch.randn(3)
        msg = r'in_dims is not compatible with the structure of `inputs`'

        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, (0,))(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.mul, (0, 0, 0))(x, y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=([0],))([x, y])
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))([x, y])
        # The following should not throw
        vmap(torch.mul, (0, 0))(x, y)

    def test_integer_in_dim_but_not_tensor_input_err_msg(self):
        def foo(xy):
            return xy[0] * xy[1]

        def bar(x, yz):
            return x * yz[0] * yz[1]

        x = torch.randn(2, 3)

        # the following are errors in jax (and will always be errors)
        msg = 'Got in_dim=0 for an input but the input is of type'
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.sum)(x, 0)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(torch.sum, (0, 0))(x, 0)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, 1])
        # The following should not throw
        vmap(torch.sum, (0, None))(x, 0)

    def test_in_dim_not_in_tensor_err_msg(self):
        def foo(x):
            return x * x

        x = torch.randn(2, 3)
        y = torch.randn(2, 3)

        msg = r'Got in_dim=-?\w for some input, but that input is a Tensor of dimensionality \w'
        with self.assertRaisesRegex(ValueError, msg):
            vmap(foo)(torch.randn([]))
        with self.assertRaisesRegex(ValueError, msg):
            vmap(foo, in_dims=(0,))(torch.randn([]))
        with self.assertRaisesRegex(ValueError, msg):
            vmap(foo, in_dims=(-3,))(x)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(foo, in_dims=(2,))(y)
        with self.assertRaisesRegex(ValueError, msg):
            vmap(lambda z: z[0] + z[1], in_dims=([3, 0],))([x, y])
        # the following should not throw
        vmap(foo, in_dims=(0,))(torch.randn(2, 3))
        vmap(foo, in_dims=(1,))(torch.randn(2, 3))

    def test_fallback_does_not_warn_by_default(self):
        # NB: One day we will implement a batching rule for torch.atan2.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = torch.copysign
        x = torch.randn(11)
        y = torch.randn(11)
        with warnings.catch_warnings(record=True) as wa:
            vmap(op)(x, y)
            # The single warning here is the "vmap is experimental"
            # warning, not a warning from the vmap fallback path.
            self.assertEqual(len(wa), 1)

    @unittest.expectedFailure
    def test_fallback_warns_when_warnings_are_enabled(self):
        # NB: One day we will implement a batching rule for torch.atan2.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = torch.copysign
        x = torch.randn(11)
        y = torch.randn(11)
        with warnings.catch_warnings(record=True) as wa:
            with EnableVmapFallbackWarnings():
                vmap(op)(x, y)
            self.assertEqual(len(wa), 2)
            self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)

    def _assert_uses_vmap_fallback(self, vmap_args, inputs):
        return
        # with warnings.catch_warnings(record=True) as wa:
        #     with EnableVmapFallbackWarnings():
        #         result = vmap(*vmap_args)(*inputs)
        #     self.assertEqual(len(wa), 2)
        #     self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)

    def test_fallback_zero_dim(self):
        # NB: One day we will implement a batching rule for torch.atan2.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = torch.copysign
        x = torch.randn(11)
        y = torch.randn(11)
        self._assert_uses_vmap_fallback((op,), (x, y))

        B0, B1 = 0, 3
        x = torch.randn(B0, 11)
        y = torch.randn(11)

        msg = 'The fallback path does not support vmap over dims of size 0'

        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, (0, None))(x, y)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, (None, 0))(y, x)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(x, x)

        x = torch.randn(B0, B1, 11)
        y = torch.randn(B1, 11)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, (0, None))(x, y)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, (None, 0))(y, x)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(x, x)

    def test_fallback_atan2(self):
        # NB: One day we will implement a batching rule for torch.atan2.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = torch.copysign

        x = torch.randn(5, 7, 11)
        y = torch.randn(5, 7, 11)

        self._assert_uses_vmap_fallback((op,), (x, y))

        # fallback on torch.atan2
        x = torch.randn(7, 11, 5)
        y = torch.randn(5, 7, 11)
        result = vmap(op, (2, 0))(x, y)
        self.assertEqual(result, op(x.permute(2, 0, 1), y))

        # fallback on torch.atan2, nested vmap
        x = torch.randn(7, 11, 5)
        y = torch.randn(5, 7, 11)
        result = vmap(vmap(op), (2, 0))(x, y)
        self.assertEqual(result, op(x.permute(2, 0, 1), y))

        # big batch size (total 10000)
        x = torch.randn(100, 10, 10, 5)
        y = torch.randn(100, 10, 10)
        result = vmap(vmap(vmap(op)))(x, y)
        self.assertEqual(result, op(x, y.view(100, 10, 10, 1)))

    # TODO: No clue what is wrong here.
    @unittest.skip
    def test_fallback_masked_fill(self):
        # NB: One day we will implement a batching rule for masked_fill
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        def run_test(batch_size):
            B0 = batch_size
            x = torch.randn(B0, 7, 11, 13)
            dim = 0
            index = torch.tensor([0, 4, 2])
            values = torch.randn(B0, 3, 13)

            self._assert_uses_vmap_fallback((torch.index_add, (0, None, None, 0)), (x, dim, index, values))

            result = vmap(torch.index_add, (0, None, None, 0))(x, dim, index, values)
            expected = torch.index_add(
                x, dim + 1, index, values.view(B0, 3, 1, 13))
            self.assertEqual(result, expected)

        run_test(batch_size=5)
        run_test(batch_size=1237)

    def test_fallback_multiple_returns(self):
        # NB: One day we will implement a batching rule for torch.var_mean
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        B0, B1, B2 = 2, 3, 1237
        tensor = torch.randn(B0, 10)

        self._assert_uses_vmap_fallback((torch.var_mean,), (tensor,))

        # fallback correctness on torch.var_mean
        result = vmap(torch.var_mean)(tensor)
        expected = torch.var_mean(tensor, dim=1)
        self.assertEqual(result, expected)

        # nested vmap
        tensor = torch.randn(B0, B1, 10)
        result = vmap(vmap(torch.var_mean))(tensor)
        expected = torch.var_mean(tensor, dim=2)
        self.assertEqual(result, expected)

        # big batch size, nested vmap
        tensor = torch.randn(B0, B1, B2, 10)
        result = vmap(vmap(vmap(torch.var_mean)))(tensor)
        expected = torch.var_mean(tensor, dim=3)
        self.assertEqual(result, expected)

    def test_inplace_fallback_unary(self):
        # Test the in-place fallback on an in-place method that takes no
        # additional Tensor arguments. This is the simplest case of the fallback.
        # NB: One day we will implement a batching rule for acos_.
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = Tensor.acos_
        B0, B1, B2 = 2, 3, 10000

        x = torch.randn(B0, 5)
        self._assert_uses_vmap_fallback((op,), (x,))

        # Single vmap
        x_orig = torch.rand(B0, 5)
        x = x_orig.clone()
        result = vmap(op)(x)
        self.assertTrue(result is x)
        self.assertEqual(result, x_orig.acos())

        # Single vmap + different out_dim produces a view(!)
        x_orig = torch.rand(B0, 5)
        x = x_orig.clone()
        result = vmap(op, out_dims=(1,))(x)
        self.assertTrue(result._base is x)
        self.assertEqual(result, x_orig.t().acos())

        # Nested vmap
        x_orig = torch.randn(B0, B1, 5)
        x = x_orig.clone()
        result = vmap(vmap(op))(x)
        self.assertTrue(result is x)
        self.assertEqual(result, x_orig.acos())

        # Nested vmap, large batch size
        x_orig = torch.randn(B0, B1, B2, 5)
        x = x_orig.clone()
        result = vmap(vmap(vmap(op)))(x)
        self.assertTrue(result is x)
        self.assertEqual(result, x_orig.acos())

    def test_inplace_fallback_nary_same_levels(self):
        # NB: One day we will implement a batching rule for atan2_
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = Tensor.atan2_
        outplace_op = torch.atan2

        x = torch.randn(5, 7, 11)
        y = torch.randn(5, 7, 11)
        self._assert_uses_vmap_fallback((op,), (x, y))

        # Single vmap
        B0 = 5
        x_orig = torch.randn(7, 11, B0)
        x = x_orig.clone()
        y = torch.randn(B0, 7, 11)
        vmap(op, (2, 0))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y.movedim(0, 2)))

        # Nested vmap
        B0, B1 = 5, 7
        x_orig = torch.randn(B1, 11, B0)
        x = x_orig.clone()
        y = torch.randn(B0, B1, 11)
        vmap(vmap(op), (2, 0))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y.movedim([0, 1], [2, 0])))

        # big batch size (total 10000)
        B0, B1, B2 = 100, 10, 10
        x_orig = torch.randn(B0, B1, B2, 5)
        x = x_orig.clone()
        y = torch.randn(B0, B1, B2)
        vmap(vmap(vmap(op)))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y.view(B0, B1, B2, 1)))

    # ("Fallback isInplaceVmapCompatible check is broken")
    @unittest.expectedFailure
    def test_inplace_fallback_nary_different_levels(self):
        # NB: One day we will implement a batching rule for atan2_
        # If/when we do, this test should be replaced to test the fallback
        # path on another operator to avoid bitrot.
        op = Tensor.atan2_
        outplace_op = torch.atan2
        B0, B1 = 2, 3

        x = torch.rand(B0, 7)
        y = torch.rand(7)
        self._assert_uses_vmap_fallback((op, (0, None)), (x, y))

        # op(left, right): All of the levels in right are found in left
        x_orig = torch.rand(B0, 7)
        x = x_orig.clone()
        y = torch.rand(7)
        vmap(op, in_dims=(0, None))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y))

        x_orig = torch.rand(B0, B1, 7)
        x = x_orig.clone()
        y = torch.rand(B0, 7)
        vmap(vmap(op, in_dims=(0, None)))(x, y)
        self.assertEqual(x, outplace_op(x_orig, y.view(B0, 1, 7)))

        # op(left, right): Some of the levels in right are not found in left
        msg = r'vmap: aten::atan2_\(self, \*extra_args\) is not possible'
        x = torch.rand(7)
        y = torch.rand(B0, 7)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(x, y)

        x = torch.rand(B1, 7)
        y = torch.rand(B0, 7)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 0))(x, y)

        x = torch.rand(B1, 7)
        y = torch.rand(7, B0)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 1))(x, y)

        x = torch.rand(B0, 7)
        y = torch.rand(B0, B1, 7)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(vmap(op, in_dims=(None, 0)))(x, y)

    def test_backward_unsupported_interaction(self):
        x = torch.randn(3, requires_grad=True)
        y = torch.randn(5)
        grad = torch.randn_like(x)
        err_msg = r'backward\(\) called inside a functorch transform'

        def backward_on_vmapped_tensor(x):
            x.sum().backward()

        # FIXME
        return self.skipTest("error: element 0 of tensors does not require grad and does not have a grad_fn")
        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(backward_on_vmapped_tensor)(x)

        def backward_with_vmapped_grad(x, grad):
            x.backward(grad)

        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(backward_with_vmapped_grad)(x, grad)

        def completely_unrelated_backward(y):
            x.sum().backward()
            return y

        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(completely_unrelated_backward)(y)

    @unittest.expectedFailure
    def test_grad_unsupported_interaction(self):
        input_tensor = torch.randn(3, requires_grad=True)
        err_msg = 'autograd.grad.* called inside torch.vmap'

        captured = torch.randn(3, requires_grad=True)

        def output_to_grad_is_vmapped(input_tensor):
            output = (captured * input_tensor).sum()
            return torch.autograd.grad([output], [captured])[0]

        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(output_to_grad_is_vmapped)(input_tensor)

        output = (input_tensor ** 2).sum()

        def input_to_grad_is_vmapped(input_tensor):
            return torch.autograd.grad([output], [input_tensor])[0]

        with self.assertRaisesRegex(RuntimeError, err_msg):
            vmap(input_to_grad_is_vmapped)(input_tensor)

    def test_batched_gradient_basic(self):
        N = 3
        x = torch.randn(N, requires_grad=True)
        y = torch.randn(N)

        def vjp_mul(v):
            return torch.autograd.grad([x * y], [x], grad_outputs=[v])[0]

        batched_v = torch.eye(N)
        jacobian = vmap(vjp_mul)(batched_v)
        self.assertEqual(jacobian, torch.diagflat(y))

    def test_functools_partial(self):
        x = torch.randn(3)
        y = torch.randn(2, 3)
        result = vmap(functools.partial(torch.mul, x))(y)
        self.assertEqual(result, x * y)

    def test_nn_module(self):
        tensor = torch.randn(2, 3)
        model = torch.nn.Linear(3, 3, bias=False)
        result = vmap(model)(tensor)
        self.assertEqual(result, model(tensor))

    def test_fallback_with_undefined_grad(self):
        B0 = 7
        x = torch.randn(2, 3, 4, 5, requires_grad=True)
        weight = torch.randn(3, 3, 1, 1)
        v = torch.randn(B0, 2, 3, 4, 5)

        def get_vjp(v):
            result = torch.nn.functional.conv2d(x, weight)
            grad_x, = torch.autograd.grad(result, x, v)
            return grad_x

        # Runs vmap(get_vjp)(v), which should not error out.
        # The backward formula for convolution returns an undefined
        # Tensor for grad_bias because the original bias does not exist.
        #
        # In the future we'll probably add a batching rule for convolution
        # backward. When this happens, we should modify this test to use a
        # different op (and/or create and use a dummy operator) to avoid bitrot.
        self._assert_uses_vmap_fallback([get_vjp], [v])

    def test_reshape_dim_into(self):
        x = torch.randn(2, 3, 5, 7)

        y = reshape_dim_into(0, 0, x)
        self.assertEqual(y, x.reshape(6, 5, 7))

        y = reshape_dim_into(0, 1, x)
        self.assertEqual(y, x.movedim(0, 1).reshape(3, 2 * 5, 7))

        y = reshape_dim_into(0, 2, x)
        self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7))

        y = reshape_dim_into(1, 2, x)
        self.assertEqual(y, x.movedim(1, 2).reshape(2, 5, 3 * 7))

        y = reshape_dim_into(0, -2, x)
        self.assertEqual(y, x.movedim(0, 1).reshape(3, 2 * 5, 7))

        y = reshape_dim_into(0, -1, x)
        self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7))

        y = reshape_dim_into(-4, -1, x)
        self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7))

    def test_reshape_dim_outof(self):
        x = torch.randn(12, 12, 12).permute(2, 1, 0)

        y = reshape_dim_outof(0, 2, x)
        self.assertEqual(y, x.reshape(2, 6, 12, 12))

        y = reshape_dim_outof(1, 4, x)
        self.assertEqual(y, x.reshape(12, 4, 3, 12))

        y = reshape_dim_outof(2, 6, x)
        self.assertEqual(y, x.reshape(12, 12, 6, 2))

        y = reshape_dim_outof(-1, 6, x)
        self.assertEqual(y, x.reshape(12, 12, 6, 2))

    def test_batch_rule_does_not_need_to_handle_no_batched_input(self):
        def f(x, y):
            res = torch.dot(y, torch.ones(2))
            return x + res

        x = torch.randn(7, 5)
        y = torch.randn(3, 2)
        out = vmap(vmap(f, in_dims=(0, None)), in_dims=(None, 0))(x, y)
        expected = torch.mv(y, torch.ones(2)).view(3, 1, 1) + x
        self.assertEqual(out, expected)

    def _test_vmap_autocast(self, device):

        if torch.device(device).type == "cpu":
            amp_dtype = torch.bfloat16
        else:
            amp_dtype = torch.float16

        a_float32 = torch.rand(4, 2, 3, device=device)
        b_float32 = torch.rand(4, 3, 2, device=device)
        c_float32 = torch.rand(4, 2, 2, device=device)
        d_float32 = torch.rand(4, 3, 2, device=device)

        # Case 1, autocast inside vmapped function
        def func1(x, y, z, w):
            with torch.autocast(dtype=amp_dtype, device_type=device):
                e_float16 = torch.matmul(x, y)
                assert e_float16.dtype == amp_dtype, e_float16.dtype
                f_float16 = torch.matmul(z, e_float16)
                assert f_float16.dtype == amp_dtype, f_float16.dtype
            return torch.matmul(w, f_float16.float())

        expected = func1(a_float32, b_float32, c_float32, d_float32)
        out = vmap(func1)(a_float32, b_float32, c_float32, d_float32)
        assert expected.allclose(out)

        # Case 2, autocast decorator inside vmapped function
        @torch.autocast(dtype=amp_dtype, device_type=device)
        def func2(x, y, z, w):
            e_float16 = torch.matmul(x, y)
            assert e_float16.dtype == amp_dtype, e_float16.dtype
            f_float16 = torch.matmul(z, e_float16)
            assert f_float16.dtype == amp_dtype, f_float16.dtype
            return torch.matmul(w, f_float16)

        expected = func2(a_float32, b_float32, c_float32, d_float32)
        out = vmap(func2)(a_float32, b_float32, c_float32, d_float32)
        assert expected.allclose(out)

        # Case 3, autocast is outside vmapped function
        def func3(x, y, z, w):
            e_float16 = torch.matmul(x, y)
            assert e_float16.dtype == amp_dtype, e_float16.dtype
            f_float16 = torch.matmul(z, e_float16)
            assert f_float16.dtype == amp_dtype, f_float16.dtype
            return torch.matmul(w, f_float16)

        with torch.autocast(dtype=amp_dtype, device_type=device):
            expected = func3(a_float32, b_float32, c_float32, d_float32)
            out = vmap(func3)(a_float32, b_float32, c_float32, d_float32)

        assert expected.allclose(out)

    @unittest.skip("Somehow, vmap and autocast do not work on CPU")
    def test_vmap_autocast_cpu(self):
        self._test_vmap_autocast("cpu")

    @skipIf(not torch.cuda.is_available(), "CUDA is unavailable")
    def test_vmap_autocast_cuda(self):
        self._test_vmap_autocast("cuda")


def slice_inputs(inputs, bdims, i):
    result = []
    for inp, bdim in zip(inputs, bdims):
        if bdim is None:
            result.append(inp)
        else:
            result.append(inp.select(bdim, i))
    return tuple(result)


def reference_vmap(op, inputs, in_dims=0, out_dims=0):
    if isinstance(in_dims, int):
        in_dims = (in_dims,) * len(inputs)
    bdim_sizes = [inp.size(dim) for inp, dim in zip(inputs, in_dims) if dim is not None]
    assert all(bdim_size == bdim_sizes[0] for bdim_size in bdim_sizes)
    bdim_size = bdim_sizes[0]
    results = tuple(op(*slice_inputs(inputs, in_dims, i)) for i in range(bdim_size))

    assert len(results) > 0
    op_has_single_return = not isinstance(results[0], tuple)
    if op_has_single_return:
        assert all(isinstance(result, torch.Tensor) for result in results)
        if isinstance(out_dims, int):
            out_dims = (out_dims,) * 1
        return torch.stack(results, dim=out_dims[0])

    assert all(isinstance(result, tuple) for result in results)
    num_returns = len(results[0])
    assert all(len(result) == num_returns for result in results)
    if isinstance(out_dims, int):
        out_dims = (out_dims,) * num_returns
    return tuple(torch.stack(result_shards, out_dim)
                 for result_shards, out_dim in zip(zip(*results), out_dims))


class TensorFactory:
    @staticmethod
    def rand(size, device='cpu', dtype=torch.float):
        return torch.rand(size, device=device, dtype=dtype)

    @staticmethod
    def randn(size, device='cpu', dtype=torch.float):
        return torch.randn(size, device=device, dtype=dtype)

    @staticmethod
    def randp1(size, device='cpu', dtype=torch.float):
        return torch.rand(size, device=device, dtype=dtype) + 1

# Tests vmap(op, in_dims, out_dims)(*inputs) by comparing the output to a
# (slow) sequential map+stack fallback.
#
# check_view: Test if the first returned output is a view of the first input
# check_propagates_grad: Test if the operation propagates gradients.


def _vmap_test(self, op, inputs, in_dims=0, out_dims=0,
               check_view=False, check_propagates_grad=True):
    result = vmap(op, in_dims, out_dims)(*inputs)
    reference_result = reference_vmap(op, inputs, in_dims, out_dims)
    self.assertEqual(result, reference_result)
    op_has_single_return = not isinstance(result, tuple)

    if check_view:
        result_as_tuple = (result,) if op_has_single_return else result
        for output in result_as_tuple:
            input0_base = inputs[0] if inputs[0]._base is None else inputs[0]._base
            self.assertTrue(output._base is input0_base,
                            msg="result was not a view of the first input!")

    if not check_propagates_grad:
        return
    # Assuming input[0] is a floating-point tensor. Check if the vmap
    # operation propagates the requires_grad flag to the zeroth output.
    # Some vmap operators are implemented in a way that assumes that
    # they are composite with respect to autograd. If the operator ever is
    # changed to not be composite with respect to autograd, then the
    # following check should fail.
    inputs_clone = list(inputs)
    inputs_clone[0] = inputs[0].clone().requires_grad_()
    result = vmap(op, in_dims, out_dims)(*inputs_clone)
    result_as_tuple = (result,) if op_has_single_return else result
    self.assertTrue(result[0].requires_grad)


def should_allow_vmap_fallback_usage(fn):
    return getattr(fn, '_allow_vmap_fallback_usage', False)


def allowVmapFallbackUsage(fn):
    fn._allow_vmap_fallback_usage = True
    return fn

# All tests of TestVmapBase check that the slow vmap fallback is never invoked.
# This is so that we can incrementally add batching rules for operators to
# replace the slow vmap fallback path for said operators. To skip this check,
# please use the allowVmapFallbackUsage decorator.
#
# NB: Don't add tests to TestVmapBase directly, unless you want them to run
# on every subclass of TestVmapBase. Add them to e.g. TestVmapOperators.
#
# NB: TestVmapBase is a nested class. This prevents test runners from picking
# it up and running it.


class Namespace:
    class TestVmapBase(TestCase):
        def __init__(self, method_name='runTest'):
            super().__init__(method_name)

            test_method = getattr(self, method_name, None)
            if test_method is None:
                return

            if not should_allow_vmap_fallback_usage(test_method):
                setattr(self, method_name,
                        self._wrap_method_with_vmap_fallback_check(test_method))

        def _wrap_method_with_vmap_fallback_check(self, method):
            # msg = (
            #     'Expected the test to not invoke the vmap fallback path, i.e., '
            #     'all of the operators being tested in this test should have batching '
            #     'rules implemented. If you are intentionally testing something to '
            #     'do with the fallback path, use allowVmapFallbackUsage. Otherwise, '
            #     'please make sure that batching rules are implemented for the '
            #     'operator(s) being tested.'
            # )

            @functools.wraps(method)
            def wrapper(self, *args, **kwargs):
                with warnings.catch_warnings(record=True):
                    warnings.simplefilter('always')
                    with EnableVmapFallbackWarnings():
                        method(*args, **kwargs)
                    # for captured_warning in wa:
                    #     self.assertNotRegex(str(captured_warning.message), FALLBACK_REGEX, msg)
            return types.MethodType(wrapper, self)

        @allowVmapFallbackUsage
        def test_vmap_fallback_check_ok(self):
            # One day we'll implement a batching rule for torch.var_mean.
            # When that happens, please change the example to use an
            # operator that doesn't have a batching rule implemented.
            op_using_fallback = torch.var_mean
            vmap(op_using_fallback)(torch.rand(3))

        @unittest.expectedFailure
        def test_vmap_fallback_check(self):
            @self._wrap_method_with_vmap_fallback_check
            def no_fallback(self):
                pass

            # One day we'll implement a batching rule for torch.var_mean.
            # When that happens, please change the example to use an
            # operator that doesn't have a batching rule implemented.
            op_using_fallback = torch.var_mean

            @self._wrap_method_with_vmap_fallback_check
            def uses_fallback(self):
                vmap(op_using_fallback)(torch.rand(3))

            no_fallback(self)

            with self.assertRaises(AssertionError):
                uses_fallback(self)


def _make_case(op, input_getter=TensorFactory.randn):
    return (op, input_getter)


class TestVmapOperators(Namespace.TestVmapBase):
    def _vmap_test(self, *args, **kwargs):
        return _vmap_test(self, *args, **kwargs)

    def _vmap_view_test(self, *args, **kwargs):
        self._vmap_test(*args, **kwargs, check_view=True)

    def _test_unary(self, op, getter, device, *args, **kwargs):
        test = functools.partial(self._vmap_test, *args, **kwargs)
        B0, B1 = 7, 11

        # Single vmap, various in_dims / out_dims
        test(op, [getter([B0, 3], device)])
        test(op, [getter([2, 5, B0, 3], device)], in_dims=2)
        test(op, [getter([2, 5, B0, 3], device)], in_dims=2, out_dims=2)

        # Doubly nested vmap
        test(vmap(op), [getter([B0, B1], device)])
        test(vmap(op), [getter([B1, 2, 5, B0, 3], device)], in_dims=2)
        test(vmap(op, in_dims=2), [getter([2, 5, B0, B1, 3], device)],
             in_dims=2, out_dims=2)

    @parametrize("case", [
        (torch.abs, TensorFactory.randn),
        (torch.acos, TensorFactory.rand),
        (torch.asin, TensorFactory.rand),
        (torch.atan, TensorFactory.rand),
        (torch.ceil, TensorFactory.randn),
        (torch.cos, TensorFactory.rand),
        (torch.cosh, TensorFactory.rand),
        (torch.digamma, TensorFactory.rand),
        (torch.exp, TensorFactory.randn),
        (torch.expm1, TensorFactory.randn),
        (torch.floor, TensorFactory.randn),
        (torch.frac, TensorFactory.randn),
        (torch.lgamma, TensorFactory.rand),
        (torch.log, TensorFactory.randp1),
        (torch.log10, TensorFactory.randp1),
        (torch.log1p, TensorFactory.randp1),
        (torch.log2, TensorFactory.randp1),
        (torch.neg, TensorFactory.randn),
        (torch.reciprocal, TensorFactory.randp1),
        (torch.relu, TensorFactory.randn),
        (torch.round, TensorFactory.randn),
        (torch.rsqrt, TensorFactory.randp1),
        (torch.sigmoid, TensorFactory.randn),
        (torch.sign, TensorFactory.randn),
        (torch.sin, TensorFactory.rand),
        (torch.sinh, TensorFactory.rand),
        (torch.sqrt, TensorFactory.rand),
        (torch.tan, TensorFactory.rand),
        (torch.tanh, TensorFactory.rand),
        (torch.trunc, TensorFactory.randn),
    ], name_fn=lambda x: x[0].__name__)
    def test_unary_pointwise(self, case):
        op, getter = case
        self._test_unary(op, getter, 'cpu')

        # test in-place
        method = getattr(Tensor, f'{op.__name__ + "_"}')
        self._test_unary(method, getter, 'cpu', check_propagates_grad=False)

    def test_clone(self):
        # Some basic tests
        self._test_unary(lambda x: x.clone(), TensorFactory.randn, 'cpu')
        self._test_unary(lambda x: x.clone(memory_format=torch.preserve_format),
                         TensorFactory.randn, 'cpu')
        self._test_unary(lambda x: x.clone(memory_format=torch.contiguous_format),
                         TensorFactory.randn, 'cpu')

        # Test that the per-examples are contiguous when using torch.contiguous_format
        def clone_contiguous(x):
            return x.clone(memory_format=torch.contiguous_format)

        B0, B1 = 3, 5
        x = torch.randn(2, B0, 7)
        y = vmap(clone_contiguous, in_dims=1, out_dims=1)(x)
        self.assertTrue(y.movedim(1, 0).is_contiguous())
        self.assertTrue(y[:, 0, :].is_contiguous())

        x = torch.randn(2, B0, 7, B1)
        y = vmap(vmap(clone_contiguous, in_dims=2), in_dims=1)(x)
        self.assertTrue(y.is_contiguous())
        self.assertTrue(y[0][0].is_contiguous())

        msg = r'only supported with memory_format torch.preserve_format or torch.contiguous_format'
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(lambda x: x.clone(memory_format=torch.channels_last))(torch.randn(B0))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(lambda x: x.clone(memory_format=torch.channels_last_3d))(torch.randn(B0))

    def test_weird_matmul_case(self):
        # Check that this doesn't crash.
        # https://github.com/pytorch/functorch/issues/417
        x = torch.randn(5, 2, 2, 2)
        y = torch.randn(5, 7, 2)

        vmap(vmap(torch.matmul, in_dims=(None, 0)))(x, y)

    @parametrize("case",
                 (
                     (torch.clamp_min_, TensorFactory.randn),
                     (torch.clamp_max_, TensorFactory.randn),
                 ), name_fn=lambda x: x[0].__name__)
    def test_clamp_inplace_variant(self, case):
        test = self._vmap_test

        def get_number(getter):
            return getter([]).item()

        op, getter = case
        device = 'cpu'
        B0, B1 = 7, 11

        # Single vmap: op(Tensor, Tensor)
        test(op, (getter([B0, 3], device), getter([B0, 3], device)), check_propagates_grad=False)
        test(op, (getter([B0], device), getter([B0], device)), check_propagates_grad=False)
        test(op, (getter([2, B0, 3], device), getter([2, B0, 3], device)), in_dims=(1, 1), check_propagates_grad=False)
        test(op, (getter([B0, 2, 3], device), getter([2, B0, 3], device)),
             in_dims=(0, 1), out_dims=1, check_propagates_grad=False)
        test(op, (getter([B0, 2, 3], device), getter([1, 1], device)), in_dims=(0, None), check_propagates_grad=False)
        test(op, (getter([B0, 3], device), getter([B0, 3], device)), in_dims=(0, 0), check_propagates_grad=False)

        # Nested vmap: op(Tensor, Tensor)
        test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 1, 3], device)), check_propagates_grad=False)

        # Python number overload: op(Tensor, Number)
        number = get_number(getter)
        self._test_unary(lambda t: op(t, number), getter, device, check_propagates_grad=False)

    @parametrize('case', [
        subtest(_make_case(torch.clamp_min), name='clamp_min'),
        subtest(_make_case(torch.clamp_max), name='clamp_max'),
    ])
    def test_clamp_variant(self, case):
        test = self._vmap_test

        def get_number(getter):
            return getter([]).item()

        op, getter = case
        device = 'cpu'
        B0, B1 = 7, 11

        # Single vmap: op(Tensor, Tensor)
        test(op, (getter([B0, 3], device), getter([B0, 3], device)))
        test(op, (getter([B0], device), getter([B0, 2, 3], device)))
        test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1))
        test(op, (getter([B0], device), getter([2, B0, 3], device)),
             in_dims=(0, 1), out_dims=1)
        test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None))
        test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(None, 0))

        # Nested vmap: op(Tensor, Tensor)
        test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device)))
        test(vmap(op, in_dims=(None, 0)),
             (getter([B0, 2, 3], device), getter([B1, 3], device)), in_dims=(0, None))

        # Python number overload: op(Tensor, Number)
        number = get_number(getter)
        self._test_unary(lambda t: op(t, number), getter, device)

    def test_copy_(self):
        x = torch.randn(3)
        y = torch.randn(3)
        vmap(Tensor.copy_)(x, y)
        self.assertEqual(x, y)

        x = torch.randn(3)
        y = torch.randn(3, 2)
        vmap(Tensor.copy_, in_dims=(1, None))(y, x)
        self.assertEqual(y, x.expand(2, 3).t())

        x = torch.randn(3)
        y = torch.randn(2, 3)
        with self.assertRaisesRegex(RuntimeError, 'inplace'):
            vmap(Tensor.copy_, in_dims=(None, 0))(x, y)

    def test_silu_backward(self):
        test = self._vmap_test
        device = 'cpu'
        getter = TensorFactory.randp1
        B0 = 7
        op = torch.ops.aten.silu_backward

        # Single vmap: op(Tensor, Tensor)
        test(op, (getter([B0, 3], device), getter([B0, 3], device)))
        test(op, (getter([], device), getter([B0], device)), in_dims=(None, 0))
        test(op, (getter([2, B0], device), getter([2], device)), in_dims=(1, None))

    @parametrize('case', [
        subtest(_make_case(torch.add), name='add'),
        subtest(_make_case(lambda x, y: x + y), name='add_dunder'),
        subtest(_make_case(torch.sub), name='sub'),
        subtest(_make_case(lambda x, y: x - y), name='sub_dunder'),
        subtest(_make_case(torch.mul), name='mul'),
        subtest(_make_case(lambda x, y: x * y), name='mul_dunder'),
        subtest(_make_case(torch.div, input_getter=TensorFactory.randp1), name='div'),
        subtest(_make_case(lambda x, y: x / y, input_getter=TensorFactory.randp1), name='div_dunder'),
        subtest(_make_case(torch.pow, input_getter=TensorFactory.randp1), name='pow'),
        subtest(_make_case(lambda x, y: x ** y, input_getter=TensorFactory.randp1), name='pow_dunder'),
    ])
    def test_arithmetic(self, case):
        test = self._vmap_test

        def get_number(getter):
            return getter([]).item()

        op, getter = case
        device = 'cpu'
        B0, B1 = 7, 11

        # Single vmap: op(Tensor, Tensor)
        test(op, (getter([B0, 3], device), getter([B0, 3], device)))
        test(op, (getter([B0], device), getter([B0, 2, 3], device)))
        test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1))
        test(op, (getter([B0], device), getter([2, B0, 3], device)),
             in_dims=(0, 1), out_dims=1)
        test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None))
        test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(0, None))

        # Nested vmap: op(Tensor, Tensor)
        test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device)))
        test(vmap(op, in_dims=(None, 0)),
             (getter([B0, 2, 3], device), getter([B1, 3], device)), in_dims=(0, None))

        # Python number overload: op(Tensor, Number) (and vice-versa)
        number = get_number(getter)
        self._test_unary(lambda t: op(t, number), getter, device)
        number = get_number(getter)
        self._test_unary(lambda t: op(number, t), getter, device)

        # Type promotion: op(Logical Scalar Tensor, Logical Scalar Tensor)
        test(op, (getter([B0], device), getter([B0], device, dtype=torch.double)))
        test(op, (getter([B0], device, dtype=torch.double), getter([B0], device)))
        test(op, (getter([B0], device), getter([B0], device)))

        # Type promotion: op(Tensor, Logical Scalar Tensor) (and vice-versa)
        test(op, (getter([B0, 2], device), getter([B0], device, torch.double)))
        test(op, (getter([B0], device, torch.double), getter([B0, 2], device)))

        if not torch.cuda.is_available():
            return

        # TODO(rzou): fix the following
        # # Test cross-device scalars
        # number = get_number(getter)
        # self._test_unary(lambda t: op(t, number), getter, device='cuda')
        # self._test_unary(lambda t: op(number, t), getter, device='cuda')
        # self._test_unary(lambda t: op(t, torch.tensor(number)), getter, device='cuda')

    def test_as_strided(self):
        def _test(sizes, strides, offset, tensor, lambd):
            # bdim at dim 0 test
            result = vmap(lambda t: t.as_strided(sizes, strides, offset))(tensor)
            expected = vmap(lambd)(tensor)
            self.assertTrue(result._base is expected._base)
            self.assertEqual(result, expected)

            # bdim at dim -1 test
            tensor = tensor.movedim(0, -1)
            result = vmap(lambda t: t.as_strided(sizes, strides, offset), -1)(tensor)
            expected = vmap(lambd, -1)(tensor)
            self.assertTrue(result._base is expected._base)
            self.assertEqual(result, expected)

        # single vmap test
        B0 = 5
        # Each Tensor has shape [B0, 2, 3]; the expressions below
        # are just to get tensors of different strides that have shape [B0, 2, 3]
        tensors = [
            # contiguous
            torch.randn(B0, 2, 3),
            # non-contiguous
            torch.randn(B0, 3, 2).transpose(1, 2),
            torch.randn(3, 2, B0).movedim(-1, 0).transpose(1, 2),
            # non-zero storage offset
            torch.randn(2, B0, 2, 3)[1],
            torch.randn(2, 2, B0, 3)[1].movedim(1, 0),
            # non-contiguous strides, zero storage offset
            torch.randn(B0, 2, 4, 3, 7)[:, :, 0, :, 0],
            torch.randn(2, 4, B0, 3, 7).movedim(2, 0)[:, :, 0, :, 0],
            # non-contiguous strides, non-zero storage offset
            torch.randn(B0, 2, 4, 3, 7)[:, :, 2, :, 1],
            torch.randn(2, 4, 3, 7, B0).movedim(-1, 0)[:, :, 2, :, 1],
        ]

        for x in tensors:
            S0, S1 = x.stride()[1:]
            offset = x.storage_offset()

            # Broadcast
            _test([5, 5, 2, 3], [0, 0, S0, S1], offset, x, lambda x: x.expand(5, 5, 2, 3))
            # transpose
            _test([3, 2], [S1, S0], offset, x, lambda x: x.transpose(0, 1))
            # select
            _test([2], [S0], offset + S1, x, lambda x: x[:, 1])
            # diagonal
            _test([2], [S0 + S1], offset, x, lambda x: x.diagonal())
            # strided slice
            _test([2], [S1 * 2], offset, x, lambda x: x[0, ::2])

        # Nested vmap test
        B1 = 7
        x = torch.randn(B1, B0, 2, 3)
        S0, S1 = x.stride()[2:]
        result = vmap(vmap(lambda t: t.as_strided([5, 5, 2, 3], [0, 0, S0, S1])), in_dims=1)(x)
        expected = vmap(vmap(lambda t: t.expand(5, 5, 2, 3)), in_dims=1)(x)
        self.assertTrue(result._base is expected._base)
        self.assertEqual(result, expected)

        # Check that mal-formatted size/strides doesn't crash
        with self.assertRaisesRegex(RuntimeError, 'size and stride must have the same length'):
            x = torch.randn(B0, 2, 3).transpose(0, 1)
            vmap(lambda x: x.as_strided([1, 1, 1], [1, 1]))(x)

        # All the Sanity check #1{a,b,c} cases check that
        # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
        # doesn't index memory that is out of bounds of xs[i]. This condition
        # is important to the correctness of the as_strided batching rule
        # (see NOTE: [When will the as_strided_batching_rule fail?])

        # Sanity check #1a: The maximum indexable location of
        # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
        # is less than or equal to the maximum indexable location of xs[i].
        msg = 'This is not supported inside of vmap'
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(B0, 3)
            vmap(lambda x: x.as_strided([3], [1], 1))(x)
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(B0, 3, 5)
            vmap(lambda x: x.as_strided([4, 4], [4, 1], 0))(x)
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(B0, B1, 3, 5)
            vmap(vmap(lambda x: x.as_strided([4, 4], [4, 1], 0)))(x)

        # Sanity check #1b: The min indexable location of
        # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
        # is greater than or equal to the min indexable location of xs[i].
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(2, B0, 3)[1]
            vmap(lambda x: x.as_strided([3], [1], B0 * 3 - 1))(x)

        # Sanity check #1c:
        # xs[i] is a zero-dim tensor, but
        # xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
        # is not
        with self.assertRaisesRegex(RuntimeError, msg):
            x = torch.randn(B0, 0, 3)
            vmap(lambda x: x.as_strided([3], [1]))(x)

    def test_nll_loss(self):
        test = self._vmap_test
        op = F.nll_loss
        B = 3

        y = torch.randn(B, 2, 5)
        t = torch.randint(0, 5, (B, 2))
        test(op, (y, t))
        test(functools.partial(op, reduction='sum'), (y, t))
        test(functools.partial(op, reduction='none'), (y, t))

        y = torch.randn(B, 2, 5)
        t = torch.randint(0, 5, (2,))
        test(op, (y, t), in_dims=(0, None))
        test(functools.partial(op, reduction='sum'), (y, t), in_dims=(0, None))
        test(functools.partial(op, reduction='none'), (y, t), in_dims=(0, None))

    def test_adaptive_avg_pool2d(self):
        test = self._vmap_test
        op = functools.partial(F.adaptive_avg_pool2d, output_size=(3, 3))

        x = torch.randn(3, 5, 7, 9, 11)
        test(op, (x,))
        test(op, (x,), in_dims=(1,))
        test(op, (x,), in_dims=(4,))

    def test_bmm(self):
        op = torch.bmm
        test = self._vmap_test
        B0, B1 = 7, 11

        # shape mismatch
        msg = ""
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(0, None))(torch.randn(B0, 3, 3, 2), torch.randn(2, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))

        # left arg is vmapped
        test(op, (torch.rand(B0, 2, 3, 5), torch.rand(2, 5, 3)), in_dims=(0, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 3, 5), torch.rand(2, 5, 3)),
             in_dims=(1, None))

        # right arg is vmapped
        test(op, (torch.rand(2, 5, 3), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
        test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5, 3), torch.rand(B1, B0, 2, 3, 5)),
             in_dims=(None, 1))

        # both args are vmapped
        test(op, (torch.rand(B0, 2, 3, 5), torch.rand(B0, 2, 5, 3)))
        test(vmap(op), (torch.rand(B1, B0, 2, 3, 5), torch.rand(B0, B1, 2, 5, 3)), in_dims=(1, 0))
        test(vmap(op, in_dims=(0, None)),
             (torch.rand(B1, 2, 3, 5), torch.rand(B0, 2, 5, 3)), in_dims=(None, 0))

    def test_cat(self):
        test = self._vmap_test
        B0, B1 = 5, 7

        # Quick hack b/c vmap can't accept a list of tensors as an argument
        def get_op(dim):
            def op(*tensors):
                return torch.cat(tensors, dim=dim)
            return op

        test(get_op(0), (torch.rand(B0, 2), torch.rand(B0, 3)))
        test(get_op(0), (torch.rand(2), torch.rand(B0, 3)), in_dims=(None, 0))
        test(get_op(0), (torch.rand(2, 17), torch.rand(3, 17, B0)), in_dims=(None, 2))
        test(get_op(-1), (torch.rand(17, 2), torch.rand(17, 3, B0)), in_dims=(None, 2))
        test(vmap(get_op(0), in_dims=(0, None)),
             (torch.rand(B1, 2), torch.rand(B0, 3)), in_dims=(None, 0))
        test(vmap(get_op(0), in_dims=(0, 0)),
             (torch.rand(B1, 2), torch.rand(B0, B1, 3)), in_dims=(None, 0))

    def test_unsafe_view(self):
        # Unsafe view isn't exposed, so we get at it via
        # vmap(grad(matmul))
        test = functools.partial(self._vmap_test, check_propagates_grad=False)
        B = 2
        x = torch.randn(B, 2, 3, 3)
        y = torch.randn(B, 3, 3)

        def baz(x, y):
            return (x @ y).sum()

        test(functorch.grad(baz), (x, y))

    def test_conj(self):
        op = torch.conj

        def run_test(dtype):
            def get(shape):
                return torch.randn(shape, dtype=dtype)
            B0, B1 = 7, 11
            test = self._vmap_test

            # Single vmap, various in_dims / out_dims
            test(op, [get([B0, 3])])
            test(op, [get([2, 5, B0, 3])], in_dims=2)
            test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)

            # Doubly nested vmap
            test(vmap(op), [get([B0, B1])])
            test(vmap(op), [get([B1, 2, 5, B0, 3])], in_dims=2)
            test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])],
                 in_dims=2, out_dims=2)

        # correctness tests
        run_test(torch.float)
        run_test(torch.cfloat)

        # check that torch.conj on a non-complex tensor returns the same tensor
        real_tensor = torch.randn(3)
        result = vmap(op)(real_tensor)
        self.assertEqual(result.data_ptr(), real_tensor.data_ptr())

    def test_contiguous(self):
        op = Tensor.contiguous

        self._test_unary(op, TensorFactory.randn, 'cpu')

        # check that contiguous returns the original tensor if the per-examples
        # are already contiguous
        B0 = 3
        x = torch.randn(B0, 2, 5, 7)
        x = x.movedim(0, 2)
        result = vmap(Tensor.contiguous, in_dims=2, out_dims=2)(x)
        self.assertTrue(result is x)

        msg = 'NYI: querying is_contiguous inside of vmap for memory_format'
        tensor = torch.randn(B0, 3)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(functools.partial(op, memory_format=torch.channels_last))(tensor)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(functools.partial(op, memory_format=torch.channels_last_3d))(tensor)

    def test_stride(self):
        B0 = 3

        x = torch.randn(B0, 2, 5, 7)

        def foo(x):
            assert x.stride() == (7 * 5, 7, 1)
            return x

        vmap(foo)(x)

        x = torch.randn(2, B0, 5, 7).movedim(1, 0)

        def bar(x):
            assert x.stride() == (7 * 5 * B0, 7, 1)
            return x

        vmap(bar)(x)

    def test_chunk(self):
        test = self._vmap_view_test
        op = torch.chunk
        B0, B1, B2 = 7, 11, 13

        # tests for torch.split(self, split_size: int, dim)
        test(op, (torch.rand(B0, 2, 1024), 15, -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), 9, 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 4, 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

    def test_clamp(self):
        clamp_cases = (
            (lambda t: t.clamp(min=-0.5), TensorFactory.randn),
            (lambda t: t.clamp(max=0.5), TensorFactory.randn),
            (lambda t: t.clamp(min=-0.5, max=0.5), TensorFactory.randn),
            (lambda t: t.clamp_min(min=-0.5), TensorFactory.randn),
            (lambda t: t.clamp_max(max=0.5), TensorFactory.randn),
        )
        for op, getter in clamp_cases:
            self._test_unary(op, getter, 'cpu')

    def test_comparison_ops(self):
        test = functools.partial(self._vmap_test, check_propagates_grad=False)

        getter = TensorFactory.randn
        B0, B1 = 7, 11

        ops = (
            torch.eq, lambda x, y: x == y,
            torch.gt, lambda x, y: x > y,
            torch.ge, lambda x, y: x >= y,
            torch.le, lambda x, y: x <= y,
            torch.lt, lambda x, y: x < y,
            torch.ne, lambda x, y: x != y,
        )

        for op in ops:
            # Single vmap: op(Tensor, Tensor)
            test(op, (getter([B0, 3]), getter([B0, 3])))
            test(op, (getter([B0]), getter([B0, 2, 3])))
            test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1))
            test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1), out_dims=1)
            test(op, (getter([B0]), getter([2, 3])), in_dims=(0, None))
            test(op, (getter([2, 3]), getter([B0, 3])), in_dims=(0, None))

            # Nested vmap: op(Tensor, Tensor)
            test(vmap(op), (getter([B0, B1, 2, 3]), getter([B0, B1, 3])))
            test(vmap(op, in_dims=(None, 0)),
                 (getter([B0, 2, 3]), getter([B1, 3])), in_dims=(0, None))

            # test number as inputs
            number = getter([]).item()
            self._test_unary(lambda t: op(t, number), getter, 'cpu', check_propagates_grad=False)

    def test_cross_batch_size_three(self):
        # Let's test corner case when batch_size is 3 and cross' dim argument is not specified
        # According to the cross API, dim will be assigned to the first dim with value 3
        # In this test we ensure that found dim is not batch dim.
        op = torch.cross
        test = self._vmap_test
        B0 = B1 = 3
        test(op, (torch.rand(B0, 2, 3), torch.rand(B0, 2, 3)))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B0, B1, 2, 3), torch.rand(B0, B1, 2, 3)),
             in_dims=(None, 1))

    def test_diagonal(self):
        tensor = torch.randn(3, 5, 7, 11, 13)
        test = self._vmap_view_test
        op = torch.diagonal
        test(op, (tensor, 1, 0, 1), in_dims=(0, None, None, None))
        test(op, (tensor, 0, 2, -1), in_dims=(0, None, None, None))
        test(op, (tensor, 2, 1, 2), in_dims=(1, None, None, None))
        test(op, (tensor, 0, -2, -1), in_dims=(1, None, None, None), out_dims=1)
        test(vmap(lambda t: op(t, 0, 0, -1)), (tensor,), in_dims=1, out_dims=1)
        test(vmap(vmap(lambda t: op(t, 0, 0, 1), in_dims=1), in_dims=3),
             (tensor,), in_dims=1, out_dims=1)

    def test_dot(self):
        op = torch.dot
        test = self._vmap_test
        B0, B1 = 7, 11

        # shape mismatch
        msg = ""
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2))

        # left arg is vmapped
        test(op, (torch.rand(B0, 5), torch.rand(5)), in_dims=(0, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 5), torch.rand(5)),
             in_dims=(1, None))

        # right arg is vmapped
        test(op, (torch.rand(5), torch.rand(B0, 5)), in_dims=(None, 0))
        test(vmap(op, in_dims=(None, 0)), (torch.rand(5), torch.rand(B1, B0, 5)),
             in_dims=(None, 1))

        # both args are vmapped
        test(op, (torch.rand(B0, 5), torch.rand(B0, 5)))
        test(vmap(op), (torch.rand(B1, B0, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0))
        test(vmap(op, in_dims=(0, None)),
             (torch.rand(B1, 5), torch.rand(B0, 5)), in_dims=(None, 0))

    def test_expand_as(self):
        op = torch.Tensor.expand_as
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 1, 5), torch.rand(B0, 2, 3, 5)))
        test(op, (torch.rand(B0, 1, 5), torch.rand(2, 3, 5)), in_dims=(0, None))
        test(op, (torch.rand(1, 5), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
        test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B0, B1, 2, 3, 5)))
        test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B1, B0, 2, 3, 5)), in_dims=(0, 1))
        test(vmap(op), (torch.rand(B0, B1), torch.rand(B1, 2, 3, 5)), in_dims=(0, None))
        test(vmap(vmap(op)), (torch.rand(B0, B1, B2), torch.rand(B0, B1, B2, 2, 3, 5)))

    def test_fill_and_zero_inplace(self):
        test = functools.partial(self._vmap_test, check_propagates_grad=False)
        B0, B1 = 7, 11
        ops = (
            lambda t: t.fill_(0.1),
            lambda t: t.fill_(torch.tensor(0.2)),
            lambda t: t.zero_(),
        )

        for op in ops:
            # Single vmap, various in_dims / out_dims
            test(op, [TensorFactory.randn([B0, 3])])
            test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2)
            test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)

            # Doubly nested vmap
            test(vmap(op), [TensorFactory.randn([B0, B1])])
            test(vmap(op), [TensorFactory.randn([B1, 2, 5, B0, 3])], in_dims=2)
            test(vmap(op, in_dims=2), [TensorFactory.randn([2, 5, B0, B1, 3])],
                 in_dims=2, out_dims=2)

        # test when value is a batched tensor for fill_ operator
        B0, B1 = 3, 5
        test(Tensor.fill_, [TensorFactory.randn([B0, B1]), TensorFactory.randn(B0)])

        with self.assertRaisesRegex(RuntimeError,
                                    ""):
            # Runtime Error is thrown when the tensor being written to isn't being vmapped over
            vmap(Tensor.fill_, (None, 0))(TensorFactory.randn([B0, B1]),
                                          TensorFactory.randn([B0]))

    def _test_complex_views(self, op, dtypes):
        test = self._vmap_view_test

        def run_test(op, dtype):
            def get(shape):
                return torch.randn(shape, dtype=dtype)

            B0, B1 = 7, 11

            # Single vmap, various in_dims / out_dims
            test(op, [get([B0, 3])])
            test(op, [get([3, B0])], in_dims=1)
            test(op, [get([2, 5, B0, 3])], in_dims=2)
            test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)

            # Doubly nested vmap
            test(vmap(op), [get([B0, B1])])
            test(vmap(op), [get([B1, 2, 5, 3, B0])], in_dims=4)
            test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])],
                 in_dims=2, out_dims=2)

        for dtype in dtypes:
            run_test(op, dtype)

    def test_real(self):
        self._test_complex_views(torch.real, dtypes=[torch.cfloat, torch.cdouble])

    def test_imag(self):
        self._test_complex_views(torch.imag, dtypes=[torch.cfloat, torch.cdouble])

    def test_view_as_real(self):
        self._test_complex_views(torch.view_as_real, dtypes=[torch.cfloat, torch.cdouble])

    def test_view_as_complex(self):
        def run_test(dtype):
            def get(shape):
                return torch.randn(shape, dtype=dtype)

            op = torch.view_as_complex
            test = self._vmap_view_test
            B0, B1 = 7, 11

            # Single vmap, various in_dims / out_dims
            test(op, [get([B0, 3, 2])])
            test(op, [get([2, 5, B0, 3, 2])], in_dims=2)
            test(op, [get([2, 5, B0, 3, 2])], in_dims=2, out_dims=2)

            # Doubly nested vmap
            test(vmap(op), [get([B0, B1, 2])])
            test(vmap(op), [get([B1, 2, 5, B0, 3, 2])], in_dims=2)
            test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3, 2])],
                 in_dims=2, out_dims=2)

            # Interesting case #1: Batch dim directly before dim of size 2
            test(op, [get([3, B0, 2])], in_dims=1)
            test(vmap(op, in_dims=1), [get([3, B1, B0, 2])], in_dims=2)

            # Interesting case #2: Batch dim at end of tensor, success cases
            # view_as_complex requires that the dim with size 2 have stride 1
            # in order for the view to function propertly
            test(op, [get([B0, 2]).transpose(0, 1)], in_dims=1)
            test(vmap(op, in_dims=1), [get([B0, B1, 2]).movedim(1, 2)])
            test(vmap(op, in_dims=2), [get([B0, 3, B1, 2]).movedim(2, 3)])

            # Interesting case #3: Batch dim at end of tensor, failure cases
            msg = "Tensor must have a last dimension with stride 1"
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(op, in_dims=1)(get([2, B0]))
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(vmap(op, in_dims=1), in_dims=1)(get([2, B0, B1]))

            # Invalid input: no dimension of size 2
            msg = 'Input tensor must have one or more dimensions'
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(op)(get([B0]))
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(vmap(op))(get([B0, B1]))

            # Invalid input: Batch dim has size 2, but the logical last dim does
            # not have size 2
            msg = 'Tensor must have a last dimension of size 2'
            with self.assertRaisesRegex(RuntimeError, msg):
                vmap(op, in_dims=1)(get([3, 2]))

        for dtype in [torch.float, torch.double]:
            run_test(dtype)

    def test_is_complex(self):
        ctensor = torch.randn(3, dtype=torch.cfloat)
        tensor = torch.randn(3)

        def foo(x):
            if x.is_complex():
                return torch.tensor(1)
            else:
                return torch.tensor(0)

        self.assertEqual(vmap(foo)(ctensor), torch.tensor([1, 1, 1]))
        self.assertEqual(vmap(foo)(tensor), torch.tensor([0, 0, 0]))

    def test_is_floating_point(self):
        float_tensor = torch.tensor([1., 2., 3.])
        long_tensor = torch.tensor([1, 2, 3])

        def foo(x):
            if x.is_floating_point():
                return torch.tensor(1)
            else:
                return torch.tensor(0)

        self.assertEqual(vmap(foo)(float_tensor), torch.tensor([1, 1, 1]))
        self.assertEqual(vmap(foo)(long_tensor), torch.tensor([0, 0, 0]))

    def test_is_contiguous(self):
        def foo(x):
            if x.is_contiguous():
                return torch.tensor(1.)
            else:
                return torch.tensor(0.)

        B0, B1 = 3, 5

        # Single batch dim
        contig = torch.randn(B0, 2, 7)
        self.assertEqual(vmap(foo)(contig), torch.ones(B0))

        noncontig = torch.randn(2, B0, 7)
        self.assertEqual(vmap(foo, in_dims=1)(noncontig), torch.zeros(B0))

        noncontig = torch.randn(2, B0, 7).movedim(1, 0)
        self.assertEqual(vmap(foo)(noncontig), torch.zeros(B0))

        noncontig = torch.randn(2, 7, B0)
        self.assertEqual(vmap(foo, in_dims=2)(noncontig), torch.zeros(B0))

        # Multiple batch dims
        contig = torch.randn(B0, B1, 3)
        self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))

        contig = torch.randn(B1, B0, 3)
        self.assertEqual(vmap(vmap(foo), in_dims=1)(contig), torch.ones(B0, B1))

        contig = torch.randn(B1, B0, 3).movedim(0, 1)
        self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))

        noncontig = torch.randn(B0, 3, B1)
        self.assertEqual(vmap(vmap(foo, in_dims=1))(noncontig), torch.zeros(B0, B1))

        # is_contiguous on empty tensor is True
        def bar(x):
            assert x.is_contiguous()
            return x

        vmap(bar)(torch.randn(B0, 0, 3))
        vmap(bar, in_dims=1)(torch.randn(0, B0, 3))
        vmap(bar)(torch.randn(B0, 0, 3).transpose(-1, -2))

        # is_contiguous with other memory formats
        def baz(x, memory_format):
            x.is_contiguous(memory_format=memory_format)
            return x

        msg = 'NYI: querying is_contiguous inside of vmap for memory_format'
        tensor = torch.randn(B0, 2, 7, 3)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(functools.partial(baz, memory_format=torch.channels_last))(tensor)
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(functools.partial(baz, memory_format=torch.channels_last_3d))(tensor)

    def test_unsqueeze(self):
        op = torch.unsqueeze
        test = self._vmap_view_test
        B0, B1 = 7, 11

        # unsqueeze dim 0
        test(op, (torch.rand(B0, 2, 5), 0), in_dims=(0, None))
        test(op, (torch.rand(2, B0, 5), 0), in_dims=(1, None))

        # unsqueeze last dim (positive)
        test(op, (torch.rand(B0, 2, 5), 2), in_dims=(0, None))
        test(op, (torch.rand(2, B0, 5), 2), in_dims=(1, None))

        # unsqueeze last dim (negative)
        test(op, (torch.rand(B0, 2, 5), -1), in_dims=(0, None))
        test(op, (torch.rand(2, B0, 5), -1), in_dims=(1, None))

        # nested vmaps
        def unsqueeze_0(x):
            return torch.unsqueeze(x, 0)

        def unsqueeze_last(x):
            return torch.unsqueeze(x, -1)

        # bdims in canonical order
        test(vmap(unsqueeze_0), (torch.rand(B0, B1, 2), ))
        test(vmap(unsqueeze_last), (torch.rand(B0, B1, 2),))

        # wild bdims
        test(vmap(unsqueeze_0), (torch.rand(B1, 2, B0),), in_dims=2)
        test(vmap(unsqueeze_0, in_dims=1), (torch.rand(2, B1, B0),), in_dims=2)
        test(vmap(unsqueeze_last), (torch.rand(B1, 2, B0),), in_dims=2)
        test(vmap(unsqueeze_last, in_dims=1), (torch.rand(2, B1, B0),), in_dims=2)

    def test_movedim(self):
        op = torch.movedim
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13

        # movedim(tensor, int, int) variant
        test(op, (torch.rand(B0, 2, 5), 0, 1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 5), 0, 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 2, B0, 5), 0, 1), in_dims=(2, None, None))
        test(vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
             (torch.rand(B1, 2, B0, 5, B2), 0, 1), in_dims=(2, None, None))

        # movedim(tensor, intlist, intlist) variant
        test(op, (torch.rand(B0, 2, 3, 5), [1, 0], [0, 2]), in_dims=(0, None, None))
        test(op, (torch.rand(2, 3, B0, 5), [1, 0], [0, 2]), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)),
             (torch.rand(B1, 2, B0, 5), [0, 1], [1, 0]), in_dims=(2, None, None))
        test(vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
             (torch.rand(B1, 2, B0, 5, B2), [0, 1], [1, 0]), in_dims=(2, None, None))

    def test_mm(self):
        op = torch.mm
        test = self._vmap_test
        B0, B1 = 7, 11

        # shape mismatch
        msg = "Shape mismatch"
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))

        # left arg is vmapped
        test(op, (torch.rand(B0, 2, 5), torch.rand(5, 2)), in_dims=(0, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5, 2)),
             in_dims=(1, None))

        # right arg is vmapped
        test(op, (torch.rand(2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0))
        test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5, 2)),
             in_dims=(None, 1))

        # both args are vmapped
        test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5, 2)))
        test(vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5, 2)), in_dims=(1, 0))
        test(vmap(op, in_dims=(0, None)),
             (torch.rand(B1, 2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0))

    def test_mv(self):
        op = torch.mv
        test = self._vmap_test
        B0, B1 = 7, 11

        # shape mismatch
        msg = ""
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(0, None))(torch.randn(B0, 2, 2), torch.randn(2, 2))
        with self.assertRaisesRegex(RuntimeError, msg):
            vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2))

        # left arg is vmapped
        test(op, (torch.rand(B0, 2, 5), torch.rand(5)), in_dims=(0, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5)),
             in_dims=(1, None))

        # right arg is vmapped
        test(op, (torch.rand(2, 5), torch.rand(B0, 5)), in_dims=(None, 0))
        test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5)),
             in_dims=(None, 1))

        # both args are vmapped
        test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5)))
        test(vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0))
        test(vmap(op, in_dims=(0, None)),
             (torch.rand(B1, 2, 5), torch.rand(B0, 5)), in_dims=(None, 0))

    def test_narrow(self):
        op = torch.narrow
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13

        test(op, (torch.rand(B0, 2, 5), -1, 1, 3), in_dims=(0, None, None, None))
        test(op, (torch.rand(2, B0, 5), 1, 1, 3), in_dims=(1, None, None, None))
        test(vmap(op, in_dims=(0, None, None, None)),
             (torch.rand(B1, 2, B0, 5), 1, 0, 0), in_dims=(2, None, None, None))
        test(vmap(vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)),
             (torch.rand(B1, 2, B0, 5, B2), -1, 2, 3), in_dims=(2, None, None, None))

    def test_new_empty(self):
        # Empty is non-deterministic so we just check that the shape of the
        # output tensor is what we expect and that the vmap fallback isn't used.
        op = Tensor.new_empty

        B0, B1 = 7, 11

        result = vmap(lambda x: op(x, [2, 3]))(torch.randn(B0))
        self.assertEqual(result.shape, [B0, 2, 3])

        result = vmap(lambda x: op(x, []))(torch.randn(B0))
        self.assertEqual(result.shape, [B0])

        result = vmap(vmap(lambda x: op(x, [2, 3])))(torch.randn(B0, B1))
        self.assertEqual(result.shape, [B0, B1, 2, 3])

    def test_new_empty_strided(self):
        # Empty is non-deterministic so we just check that the size and shape
        # of the output are what we expect and that the vmap fallback isn't used
        B0, B1 = 7, 11

        def _test_single_vmap(size, stride, B0):
            x = torch.randn(B0)
            result = vmap(lambda x: x.new_empty_strided(size, stride))(x)
            S = torch.empty_strided(size, stride).storage().size()
            self.assertEqual(result.shape, [B0] + size)
            self.assertEqual(result.stride(), [S] + stride)

        def _test_double_vmap(size, stride, B0, B1):
            x = torch.randn(B0, B1)
            result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)))(x)
            S = torch.empty_strided(size, stride).storage().size()
            self.assertEqual(result.shape, [B0, B1] + size)
            self.assertEqual(result.stride(), [B1 * S, S] + stride)

            x = torch.randn(B1, B0)
            result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)), in_dims=1)(x)
            S = x.new_empty_strided(size, stride).storage().size()
            self.assertEqual(result.shape, [B0, B1] + size)
            self.assertEqual(result.stride(), [B1 * S, S] + stride)

        # contiguous case
        _test_single_vmap([2, 3, 5], [3 * 5, 5, 1], B0)
        _test_double_vmap([2, 3, 5], [3 * 5, 5, 1], B0, B1)

        # expanded
        _test_single_vmap([2, 3, 5], [0, 5, 1], B0)
        _test_double_vmap([2, 3, 5], [0, 5, 1], B0, B1)

        # some of these cases are pretty strange, just verifying that if
        # empty_strided allows them then BatchedTensor.new_empty_strided
        # can as well
        for shape in [[2, 3, 4], [0, 2, 0]]:
            for strides in [[12, 4, 1], [2, 4, 6], [0, 0, 0]]:
                _test_single_vmap(shape, strides, B0)
                _test_double_vmap(shape, strides, B0, B1)

    def test_new_zeros(self):
        op = Tensor.new_zeros
        test = functools.partial(self._vmap_test, check_propagates_grad=False)
        B0, B1 = 7, 11

        test(lambda x: op(x, 2, 3), (torch.rand(B0),))
        test(lambda x: op(x, []), (torch.rand(B0),))
        test(vmap(lambda x: op(x, 3, 5)), (torch.rand(B0, B1),))

    def test_select(self):
        op = torch.select
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 2, 5), 0, 0), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 5), 1, 1), in_dims=(1, None, None))
        test(vmap(lambda t: op(t, 1, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(vmap(lambda t: op(t, 1, 1), in_dims=1)), (torch.rand(B1, 2, B0, B2, 5),), in_dims=2)

    def test_roll_no_dims(self):
        op = torch.roll
        test = self._vmap_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 2, 5), 2), in_dims=(0, None))
        test(op, (torch.rand(2, B0, 5), 3), in_dims=(1, None))
        test(vmap(lambda t: op(t, 3)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(vmap(lambda t: op(t, 3), in_dims=1)), (torch.rand(B1, 2, B0, B2, 5),), in_dims=2)

    def test_stack(self):
        test = self._vmap_test
        B0, B1 = 5, 7

        # Quick hack b/c vmap can't accept a list of tensors as an argument
        def get_op(dim):
            def op(*tensors):
                return torch.stack(tensors, dim=dim)
            return op

        test(get_op(0), (torch.rand(B0, 3), torch.rand(B0, 3)))
        test(get_op(0), (torch.rand(3), torch.rand(B0, 3)), in_dims=(None, 0))
        test(get_op(0), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
        test(get_op(-1), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
        test(vmap(get_op(0), in_dims=(0, None)),
             (torch.rand(B1, 2), torch.rand(B0, 2)), in_dims=(None, 0))
        test(vmap(get_op(0), in_dims=(0, 0)),
             (torch.rand(B1, 2), torch.rand(B0, B1, 2)), in_dims=(None, 0))

    def test_slice(self):
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(lambda t: t[0:1], (torch.rand(B0, 3, 5),))
        test(lambda t: t[:, 1:3], (torch.rand(3, 5, B0),), in_dims=2)
        test(vmap(lambda t: t[:, 0:1], in_dims=2), (torch.rand(3, 5, B0, B1),), in_dims=2)
        test(vmap(vmap(lambda t: t[0:1], in_dims=2), in_dims=2),
             (torch.rand(3, 5, B0, B1, B2),), in_dims=2)

    def test_squeeze(self):
        def verify_behavior(op, min_ndim=1):
            test = self._vmap_view_test
            B0, B1 = 1, 11
            # These tests cannot be used with an operator that requires more
            # than 1 dimension after batching.
            if min_ndim <= 1:
                test(op, (torch.rand(B0),))
                test(op, (torch.rand(B1),))
                test(vmap(op), (torch.rand(B0, B1, 1),))
                test(vmap(op), (torch.rand(B1, 1, B0),), in_dims=2)
            test(op, (torch.rand(B0, 3, 5),))
            test(op, (torch.rand(1, B0, 5),), in_dims=1)
            test(op, (torch.rand(B0, 0, 1, 5, 1),))
            test(op, (torch.rand(B0, 1, 1, 1, 1),))
            test(vmap(op), (torch.rand(B0, B1, 1, 3, 4),))
            test(vmap(op), (torch.rand(B1, 1, B0, 4, 5),), in_dims=2)

        verify_behavior(torch.squeeze)
        verify_behavior(lambda x: torch.squeeze(x, dim=0), min_ndim=1)
        verify_behavior(lambda x: torch.squeeze(x, dim=1), min_ndim=2)
        verify_behavior(lambda x: torch.squeeze(x, dim=-1), min_ndim=2)
        verify_behavior(lambda x: torch.squeeze(x, dim=-2), min_ndim=3)

        msg = ""
        try:
            torch.squeeze(torch.rand(10), dim=1)
        except IndexError as err:
            msg = str(err)
        with self.assertRaises(RuntimeError, msg=msg):
            vmap(lambda x: torch.squeeze(x, dim=1))(torch.rand(10))

    def _test_mean_sum_dim(self, op):
        test = self._vmap_test
        B0, B1 = 5, 7

        # Single vmap, various in_dims / out_dims
        test(lambda x: op(x, 0), [torch.randn([B0])])
        test(lambda x: op(x, -1), [torch.randn([B0])])
        test(lambda x: op(x, 0), [torch.randn([B0, 3])])
        test(lambda x: op(x, -1), [torch.randn([2, 5, B0, 3])], in_dims=2)
        test(lambda x: op(x, 2), [torch.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)

        # Doubly nested vmap
        test(vmap(lambda x: op(x, 0)), [torch.randn([B0, B1])])
        test(vmap(lambda x: op(x, -1)), [torch.randn([B0, B1])])
        test(vmap(lambda x: op(x, -2)), [torch.randn([B1, 2, 5, B0, 3])], in_dims=2)
        test(vmap(lambda x: op(x, 2), in_dims=2), [torch.randn([2, 5, B0, B1, 3])],
             in_dims=2, out_dims=2)

    def test_sum_dim(self):
        self._test_mean_sum_dim(torch.sum)

    def test_mean_dim(self):
        self._test_mean_sum_dim(torch.mean)

    def test_argmax_dim(self):
        def test(f, args):
            for loop_out, batched_out in get_fallback_and_vmap_exhaustive(f, args, {}):
                self.assertEqual(loop_out, batched_out)
        B0 = 5
        test(lambda x: torch.argmax(x), [torch.randn(B0)])
        test(lambda x: torch.argmax(x), [torch.randn(B0, 2, 3)])
        test(lambda x: torch.argmax(x, 0), [torch.randn(B0, 2, 3)])
        test(lambda x: torch.argmax(x, -1), [torch.randn(B0, 2, 3)])
        test(lambda x: torch.argmax(x, 2), [torch.randn(B0, 2, 3)])

    def _test_sum_mean(self, op):
        test = self._vmap_test
        B0, B1 = 5, 7

        # Single vmap, various in_dims / out_dims
        test(op, [torch.randn([B0])])
        test(op, [torch.randn([B0, 3])])
        test(op, [torch.randn([2, 5, B0, 3])], in_dims=2)
        test(op, [torch.randn([2, 5, B0, 3])], in_dims=2)

        # Doubly nested vmap
        test(vmap(op), [torch.randn([B0, B1])])
        test(vmap(op), [torch.randn([B1, 2, 5, B0, 3])])
        test(vmap(op), [torch.randn([2, 5, B0, B1, 3])], in_dims=2)

    def test_sum(self):
        self._test_sum_mean(torch.sum)

    def test_mean(self):
        self._test_sum_mean(torch.mean)

    def test_repeat(self):
        test = self._vmap_test
        B0 = 7
        op = Tensor.repeat
        test(lambda x: op(x, (2, 3)), (torch.rand(B0, 1, 1),))
        test(lambda x: op(x, (2, 3)), (torch.rand(1, B0, 1),), in_dims=1)

    def test_slogdet(self):
        test = functools.partial(self._vmap_test, check_propagates_grad=False)
        B0 = 7
        op = torch.linalg.slogdet
        test(op, (torch.rand(B0, 1, 1),))
        test(op, (torch.rand(B0, 2, 2),))
        test(op, (torch.rand(B0, 3, 2, 2),))
        test(op, (torch.rand(3, 2, 2, B0),), in_dims=3)

    def test_reshape(self):
        test = self._vmap_test
        B0, B1, B2 = 7, 11, 13
        op = torch.reshape
        test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None), check_view=True)
        test(op, (torch.rand(2, B0, 5), [1, 1, 10]), in_dims=(1, None), check_view=False)
        test(vmap(lambda t: t.reshape([-1])), (torch.rand(B0, B1, 2, 5),), check_view=True)
        test(vmap(vmap(lambda t: t.reshape([-1]), in_dims=2), in_dims=1),
             (torch.rand(3, B1, 2, B2, 5, B0),), in_dims=5, check_view=False)

    def test_reshape_as(self):
        test = self._vmap_test
        B0, B1, B2 = 7, 11, 13
        op = torch.Tensor.reshape_as
        test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)), check_view=True)
        test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0), check_view=True)
        test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None), check_view=True)

        test(op, (torch.rand(2, B0, 5), torch.rand(1, 1, 10)), in_dims=(1, None), check_view=False)

        test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)), check_view=True)
        test(vmap(vmap(op, in_dims=(2, None)), in_dims=(1, None)),
             (torch.rand(3, B1, 2, B2, 5, B0), torch.rand(B0, 3 * 2 * 5)),
             in_dims=(5, 0), check_view=False)

    def test_result_type(self):
        def scalar_tensor_with_dtype(op):
            def wrapped(*args, **kwargs):
                dtype = op(*args, **kwargs)
                return torch.ones([], dtype=dtype)
            return wrapped

        test = self._vmap_test
        op = scalar_tensor_with_dtype(torch.result_type)

        B0 = 2

        test(op, (torch.randn(B0), torch.randn(B0, dtype=torch.float64)),
             check_propagates_grad=False)
        test(op, (torch.randn(B0), torch.randint(10, [B0], dtype=torch.int64)),
             check_propagates_grad=False)

        test(lambda x: op(x, 1), (torch.randn(B0),), check_propagates_grad=False)
        test(lambda x: op(x, 1.6), (torch.randn(B0),), check_propagates_grad=False)

        test(lambda x: op(x, torch.tensor(1)), (torch.randn(B0),),
             check_propagates_grad=False)
        test(lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
             (torch.randn(B0),), check_propagates_grad=False)

        test(op, (torch.randn(B0, 2), torch.randn(B0, 2, dtype=torch.float64)),
             check_propagates_grad=False)
        test(op, (torch.randn(B0, 2), torch.randint(10, [B0, 2], dtype=torch.int64)),
             check_propagates_grad=False)

        test(lambda x: op(x, 1), (torch.randn(B0, 2),), check_propagates_grad=False)
        test(lambda x: op(x, 1.6), (torch.randn(B0, 2),), check_propagates_grad=False)

        test(lambda x: op(x, torch.tensor(1)), (torch.randn(B0, 2),),
             check_propagates_grad=False)
        test(lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
             (torch.randn(B0, 2),), check_propagates_grad=False)

        test(op, (torch.randn(B0, 2), torch.randn(B0, dtype=torch.float64)),
             check_propagates_grad=False)
        test(op, (torch.randn(B0, 2), torch.randint(10, [B0], dtype=torch.int64)),
             check_propagates_grad=False)

    def test_tensor_split(self):
        test = self._vmap_view_test
        op = torch.tensor_split
        B0, B1, B2 = 7, 11, 13

        # tests for torch.tensor_split(self, indices_or_sections: int, dim)
        test(op, (torch.rand(B0, 2, 1024), 5, -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), 150, 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

        # tests for torch.tensor_split(self, indices_or_sections: List[int], dim)
        test(op, (torch.rand(B0, 2, 1024), [50, 100, 378, 890], -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), [50, 100, 212, 345, 0, 378, 890], 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [50, 100, 212, 345, 0, 378, 890], 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, [4, 8, 9, 34, 29], 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

    def test_split(self):
        test = self._vmap_view_test
        op = torch.split
        B0, B1, B2 = 7, 11, 13

        # tests for torch.split(self, split_size: int, dim)
        test(op, (torch.rand(B0, 2, 1024), 101, -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), 130, 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

        # tests for torch.split(self, split_size: List[int], dim)
        test(op, (torch.rand(B0, 2, 1024), [1, 1020, 3], -1), in_dims=(0, None, None))
        test(op, (torch.rand(2, B0, 1024), [100] * 10 + [24], 1), in_dims=(1, None, None))
        test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [256] * 3 + [255], 0),
             in_dims=(2, None, None))
        test(vmap(vmap(lambda t: op(t, [4] * 8 + [8] * 4, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 64, B2),), in_dims=2)

    def test_trace(self):
        op = torch.trace
        test = self._vmap_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 2, 5),))
        test(op, (torch.rand(2, B0, 5),), in_dims=1)
        test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)

    def test_transpose(self):
        op = torch.transpose
        test = self._vmap_view_test

        B0, B1, B2 = 7, 11, 13
        test(lambda x: op(x, 0, 1), (torch.rand(B0, 2, 5),))
        test(lambda x: op(x, -1, -2), (torch.rand(B0, 2, 5),))
        test(lambda x: op(x, 3, 1), (torch.rand(B0, 2, 5, 4, 6),))
        test(lambda x: op(x, 1, 0), (torch.rand(2, B0, 5),), in_dims=1)
        test(vmap(lambda x: op(x, 0, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(vmap(lambda x: op(x, 0, 1), in_dims=2)),
             (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)

        # Special case: scalar tensor
        for dim1, dim2 in itertools.product([0, -1], [0, -1]):
            x = torch.rand(B0)
            result = vmap(lambda x: op(x, dim1, dim2))(x)
            self.assertTrue(result is x)

    def test_t(self):
        op = torch.t
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 2, 5),))
        test(op, (torch.rand(2, B0, 5),), in_dims=1)
        test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)

    def test_T_numpy(self):
        def op(t):
            return t.T

        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        test(op, (torch.rand(B0, 2, 3, 5),))
        test(op, (torch.rand(B0),))
        test(op, (torch.rand(2, B0, 3, 5),), in_dims=1)
        test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
        test(vmap(op), (torch.rand(B1, 2, B0, 3, 5),), in_dims=2)
        test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 3, B2, 5),), in_dims=2)

    def test_to(self):
        test = self._vmap_test
        B0, B1 = 7, 11

        test(lambda t: t.to('cpu'), (torch.rand(B0),))
        test(lambda t: t.to(torch.double), (torch.rand(B0),))
        test(lambda t, o: t.to(o), (torch.rand(B0), torch.randn(B0, dtype=torch.float64)))
        test(lambda t, o: t.to(o),
             (torch.rand(B0), torch.randn(B0, dtype=torch.float64)),
             in_dims=(0, None))
        test(vmap(lambda t: t.to(torch.double)), (torch.rand(B0, B1, 3),))

        # also test some casting methods
        test(lambda t: t.double(), (torch.rand(B0),))
        test(lambda t: t.float(), (torch.rand(B0),))
        test(lambda t: t.int(), (torch.rand(B0),), check_propagates_grad=False)
        test(lambda t: t.long(), (torch.rand(B0),), check_propagates_grad=False)

    def test_unfold(self):
        op = torch.Tensor.unfold
        test = self._vmap_view_test
        B0, B1, B2 = 3, 2, 5

        test(op, (torch.rand(B0, 7, 11), 0, 2, 1), in_dims=(0, None, None, None))
        test(op, (torch.rand(7, B0, 11), 1, 4, 2), in_dims=(1, None, None, None))
        test(vmap(op, in_dims=(0, None, None, None)),
             (torch.rand(B1, 7, B0, 11), 1, 5, 1), in_dims=(2, None, None, None))
        test(vmap(vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)),
             (torch.rand(B1, 7, B0, 11, B2), -1, 2, 4), in_dims=(2, None, None, None))

    def test_unbind(self):
        test = self._vmap_view_test
        op = torch.unbind
        B0, B1, B2 = 7, 11, 13

        test(op, (torch.rand(B0, 2, 1024), -1), in_dims=(0, None))
        test(op, (torch.rand(B0, 2, 0),))
        test(op, (torch.rand(2, B0, 7), 0), in_dims=(1, None))
        test(vmap(op, in_dims=(0, None)), (torch.rand(B1, 1023, B0, 5), 1),
             in_dims=(2, None))
        test(vmap(vmap(lambda t: op(t, dim=1), in_dims=2)),
             (torch.rand(B1, 2, B0, 32, B2),), in_dims=2)

    def test_view(self):
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        op = torch.Tensor.view

        # We should error out if the view would produce an incorrect result
        with self.assertRaises(RuntimeError):
            vmap(op, in_dims=(1, None))(torch.rand(2, B0, 5), [10])

        test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None))
        test(op, (torch.rand(B0, 4, 5), [1, 2, 1, 10]), in_dims=(0, None))
        test(vmap(lambda t: t.view([-1])), (torch.rand(B0, B1, 2, 5, 3),))
        test(vmap(vmap(lambda t: t.reshape([-1])), in_dims=1),
             (torch.rand(B2, B0, B1, 3, 2, 5),), in_dims=1)

    def test_view_as(self):
        test = self._vmap_view_test
        B0, B1, B2 = 7, 11, 13
        op = torch.Tensor.view_as

        # We should error out if the view would produce an incorrect result
        with self.assertRaises(RuntimeError):
            vmap(op, in_dims=(1, 0))(torch.rand(2, B0, 5), torch.rand(B0, 10))

        test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)))
        test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0))
        test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None))

        test(op, (torch.rand(B0, 4, 5), torch.rand(2, 1, 1, 10)), in_dims=(0, None))

        test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)))
        test(vmap(vmap(op, in_dims=(0, None)), in_dims=(0, None)),
             (torch.rand(B1, B2, B0, 3, 2, 5), torch.rand(B0, 3 * 2 * 5)),
             in_dims=(2, 0))

    def test_conv2d(self):
        conv_setups = [
            (torch.nn.Conv1d, torch.conv1d, [2, 4, 15]),
            (torch.nn.Conv2d, torch.conv2d, [2, 4, 15, 20]),
            (torch.nn.Conv3d, torch.conv3d, [2, 4, 15, 20, 25]),
            # (torch.nn.ConvTranspose2d, torch.conv_transpose2d, [2, 4, 15, 20])
        ]
        for conv_mod, conv_fn, inp_shape in conv_setups:
            mod = conv_mod(4, 8, kernel_size=3)
            arg_values = [torch.randn(inp_shape), mod.weight, mod.bias]
            kwarg_values = {}
            for loop_out, batched_out in get_fallback_and_vmap_exhaustive(conv_fn, arg_values, kwarg_values):
                self.assertEqual(loop_out, batched_out)

            arg_values = [torch.randn(inp_shape), mod.weight, None]
            for loop_out, batched_out in get_fallback_and_vmap_exhaustive(conv_fn, arg_values, kwarg_values):
                self.assertEqual(loop_out, batched_out)

            mod2 = conv_mod(4, 8, kernel_size=3, groups=2, stride=3, padding=1, dilation=2)
            arg_values = [torch.randn(inp_shape), mod2.weight, mod2.bias]
            kwarg_values = dict(groups=2, stride=3, padding=1, dilation=2)
            for loop_out, batched_out in get_fallback_and_vmap_exhaustive(conv_fn, arg_values, kwarg_values):
                self.assertEqual(loop_out, batched_out)

            arg_values = [torch.randn(inp_shape), mod2.weight, None]
            for loop_out, batched_out in get_fallback_and_vmap_exhaustive(conv_fn, arg_values, kwarg_values):
                self.assertEqual(loop_out, batched_out)

    def test_one_hot(self):
        sample_inputs = [
            (torch.randint(0, 3, []), 3),
            (torch.randint(0, 3, [2, 3, 4]), 4),
        ]
        for args in sample_inputs:
            for loop_out, batched_out in get_fallback_and_vmap_exhaustive(F.one_hot, args, {}):
                self.assertEqual(loop_out, batched_out)

    def test_conj_bit(self):
        x = torch.tensor([1 + 1j, 2 + 1j])

        def foo(x):
            assert not x.is_conj()
            y = x.conj()
            assert y.is_conj()
            return y
        res = vmap(foo)(x)
        self.assertEqual(res, x.conj())

    def test_mode_key(self):
        def vmap_f(x):
            return x + torch.randn(())

        def naive_f(x, shape):
            return x + torch.randn(shape)

        torch.manual_seed(0)
        out1 = vmap(vmap(vmap_f, randomness='different'), randomness='different')(torch.ones(2, 3))

        torch.manual_seed(0)
        out2 = naive_f(torch.ones(2, 3), (2, 3))
        self.assertEqual(out1, out2)

        torch.manual_seed(0)
        out1 = vmap(vmap(vmap_f, randomness='different'), randomness='different')(torch.ones(2, 3, 4))

        torch.manual_seed(0)
        out2 = naive_f(torch.ones(2, 3, 4), (2, 3, 1))
        self.assertEqual(out1, out2)

        self.assertTrue(torch.randn(()).dim() == 0)

    @parametrize('in_dim', [0, 1, 2])
    @parametrize('out_dim', [0, 1, 2])
    @parametrize('randomness', ['error', 'same'])
    def test_chunk_vmap(self, in_dim, out_dim, randomness):

        x = torch.randn(4, 5, 6)

        def f(x):
            y = x.sin()
            if randomness != "error":
                y = y + torch.rand_like(x)
            return y

        rs = torch.get_rng_state()
        expected = vmap(f, in_dims=in_dim, out_dims=out_dim, randomness=randomness)(x)

        for chunks in [1, 2, 3, 4, 7, 10, 16]:
            torch.set_rng_state(rs)
            output = chunk_vmap(
                f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunks=chunks
            )(x)
            self.assertEqual(output, expected)


instantiate_parametrized_tests(TestVmapOperators)


def construct_v(output, batch_size, contig=False):
    if contig:
        return torch.randn(batch_size, *output.shape,
                           dtype=output.dtype, device=output.device)
    result = torch.randn(*output.shape, batch_size,
                         dtype=output.dtype, device=output.device)
    return result.movedim(-1, 0)

def as_tuple(x):
    if isinstance(x, tuple):
        return x
    elif isinstance(x, list):
        return tuple(x)
    else:
        return x,


def differentiable(args):
    return tuple(arg for arg in as_tuple(args)
                 if isinstance(arg, torch.Tensor) and arg.requires_grad)


def _get_rand_no_zeros(*args, **kwargs):
    requires_grad = kwargs.get('requires_grad', False)
    kwargs_without_requires_grad = kwargs.copy()
    kwargs_without_requires_grad['requires_grad'] = False
    result = torch.rand(*args, **kwargs_without_requires_grad)
    return result.clamp_min_(0.1).requires_grad_(requires_grad)


class TestVmapBatchedGradient(Namespace.TestVmapBase):
    def _vmap_test(self, *args, **kwargs):
        return _vmap_test(self, *args, **kwargs)

    # Tests batched gradient computation of outputs = op(*args, **kwargs)
    # by comparing it to a sequential map+stack fallback.
    #
    # output_process_fn: a function that maps the outputs to the part
    #       that should be differentiated.
    # batch_size: the batch dim size for the batched grad
    def _batched_grad_test(self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3):
        if kwargs is None:
            kwargs = {}
        outputs = op(*args, **kwargs)
        outputs = differentiable(output_process_fn(outputs))
        for contig in [True, False]:
            batched_vectors = tuple(construct_v(out, batch_size, contig)
                                    for out in outputs)

            def vector_jacobian_product(*vectors):
                return torch.autograd.grad(outputs, differentiable(args), vectors,
                                           retain_graph=True)
            self._vmap_test(vector_jacobian_product, batched_vectors,
                            check_propagates_grad=False)

    # Tests batched second grad computation of outputs = op(*args, **kwargs).
    # by comparing it to a sequential map+stack fallback.
    #
    # output_process_fn: a function that maps the outputs to the part
    #       that should be differentiated.
    # batch_size: the batch dim size for the batched grad
    #
    # NB: we only test computing batched gradients in the second gradient
    # computation. One specific use case that does this is computing the hessian
    # matrix of a scalar-valued function; this is useful in Bayesian Logistic
    # Regression.
    # It might be useful to have a test that computes batched first gradients and
    # then uses those to compute batched second gradients in the future.
    def _batched_grad_grad_test(self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3):
        if kwargs is None:
            kwargs = {}
        outputs = op(*args, **kwargs)
        outputs = differentiable(output_process_fn(outputs))
        ones = tuple(torch.ones_like(out) for out in outputs)
        # Same thing as summing together all of the outputs and calling .backward()
        first_grads = torch.autograd.grad(outputs, differentiable(args), ones,
                                          create_graph=True)
        first_grads = differentiable(first_grads)
        self.assertNotEqual(
            len(first_grads), 0, "None of the first grads depend on the input!")

        for contig in [True, False]:
            batched_vectors = tuple(construct_v(grad, batch_size, contig)
                                    for grad in first_grads)

            def vector_hessian_product(*vectors):
                outputs = torch.autograd.grad(first_grads, differentiable(args), vectors,
                                              retain_graph=True, allow_unused=True)
                outputs = tuple(out for out in outputs if out is not None)
                assert len(outputs) > 0
                return outputs

            self._vmap_test(vector_hessian_product, batched_vectors,
                            check_propagates_grad=False)

    def _test_arithmetic(self, op, device, test_grad_grad=True):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        y = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
        scalar = 3.14
        self._batched_grad_test(op, (x, y))
        self._batched_grad_test(op, (scalar, y))
        self._batched_grad_test(op, (x, scalar))

        if test_grad_grad:
            self._batched_grad_grad_test(op, (x, y))

    def test_add(self, device):
        self._test_arithmetic(torch.add, device, test_grad_grad=False)
        self._test_arithmetic(lambda x, y: x + y, device, test_grad_grad=False)

    def test_sub(self, device):
        self._test_arithmetic(torch.sub, device, test_grad_grad=False)
        self._test_arithmetic(lambda x, y: x - y, device, test_grad_grad=False)

    def test_mul(self, device):
        self._test_arithmetic(torch.mul, device)
        self._test_arithmetic(lambda x, y: x * y, device)

    def test_div(self, device):
        self._test_arithmetic(torch.div, device)
        self._test_arithmetic(lambda x, y: x / y, device)

    def test_binary_cross_entropy(self, device):
        x = F.sigmoid(torch.randn(3, 2, device=device, requires_grad=True))
        target = torch.rand(3, 2, device=device)

        op = functools.partial(F.binary_cross_entropy, target=target)

        self._batched_grad_test(op, (x,), {})
        self._batched_grad_grad_test(op, (x,), {})

    def test_log_softmax(self, device):
        op = functools.partial(torch.log_softmax, dim=-1)
        x = torch.randn(3, 2, device=device, requires_grad=True)

        self._batched_grad_test(op, (x,), {})
        self._batched_grad_grad_test(op, (x,), {})

    def test_expand(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)

        def op(x):
            return x.expand(5, 5, 2, 3)
        self._batched_grad_test(op, (x,))

    @allowVmapFallbackUsage
    def test_index(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        index = torch.tensor([[0, 0], [1, 1]], device=device)

        def op(x):
            y = x * x
            return y[index]

        self._batched_grad_test(op, (x,))
        self._batched_grad_grad_test(op, (x,))

    def test_lgamma(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(Tensor.lgamma, (x,))
        self._batched_grad_grad_test(Tensor.lgamma, (x,))

    def test_log(self, device):
        x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(torch.log, (x,))
        self._batched_grad_grad_test(torch.log, (x,))

    def test_logsumexp(self, device):
        x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)

        def op(x):
            return torch.logsumexp(x, -1)

        self._batched_grad_test(op, (x,))
        self._batched_grad_grad_test(op, (x,))

    def test_log1p(self, device):
        x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(torch.log1p, (x,))
        self._batched_grad_grad_test(torch.log1p, (x,))

    @allowVmapFallbackUsage
    def test_max(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(torch.max, (x,))

    @allowVmapFallbackUsage
    def test_median(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(torch.median, (x,))

    @allowVmapFallbackUsage
    def test_min(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(torch.min, (x,))

    def test_permute(self, device):
        x = torch.randn(2, 3, 5, requires_grad=True, device=device)

        def op(x):
            return x.permute(2, 0, 1)

        self._batched_grad_test(op, (x,))

    def test_reshape(self, device):
        x = torch.randn(2, 3, 5, requires_grad=True, device=device)

        def op(x):
            return x.reshape([2 * 3, 5])

        self._batched_grad_test(op, (x,))

    def test_sigmoid(self, device):
        x = torch.randn(2, 3, requires_grad=True, device=device)
        self._batched_grad_test(Tensor.sigmoid, (x,))
        self._batched_grad_grad_test(Tensor.sigmoid, (x,))

    def test_stack(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)
        y = torch.randn(2, 3, device=device, requires_grad=True)

        def op(x, y):
            return torch.stack([x, y])
        self._batched_grad_test(op, (x, y))

    def test_select(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: x[1], (x,))
        self._batched_grad_test(lambda x: x.select(1, 2), (x,))
        self._batched_grad_test(lambda x: x.select(-1, 0), (x,))

    def test_slice(self, device):
        x = torch.randn(2, 3, 5, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: x[0:1], (x,))
        self._batched_grad_test(lambda x: x[:, 1:3], (x,))
        self._batched_grad_test(lambda x: x[..., 1:3], (x,))

    def test_trace(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(Tensor.trace, (x,))

        x = torch.randn(3, 2, 2, device=device)

        def sum_grad_trace(x):
            return grad(torch.trace)(x).sum()

        output = vmap(grad(sum_grad_trace))(x)
        self.assertEqual(output, torch.zeros_like(output))

    def test_where(self, device):
        x = torch.randn(3, 2, device=device)
        y = torch.ones(3, 2, device=device)

        def f(x, y):
            return torch.where(x > 0, x, y)

        # Check that there is no runtime error, exactness tests are done with opinfo
        vmap(f)(x, y)

        x = torch.randint(0, 2, size=(4, 3), dtype=torch.float)

        def f(t):
            return torch.where(t)

        with self.assertRaisesRegex(RuntimeError, r"Attempted to vmap over aten::where"):
            vmap(f)(x)

    @skipCUDAIfNoMagma
    @allowVmapFallbackUsage
    def test_symeig(self, device):
        def op(x):
            return torch.symeig(x, eigenvectors=True)[0]

        x = torch.randn(3, 3, device=device, requires_grad=True)
        self._batched_grad_test(op, (x,), {})
        self._batched_grad_grad_test(op, (x,), {})

    def test_threshold(self, device):
        x = torch.randn(2, 3, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: F.threshold(x, 0.5, 0.0), (x,))

    @allowVmapFallbackUsage
    def test_inplace_view(self, device):
        leaf = torch.randn(4, 5, requires_grad=True)

        def func(leaf):
            # Make sure the function is non-trivially twice differentiable
            base = leaf * leaf
            view = base[0]
            view.cos_()
            return view

        self._batched_grad_test(func, (leaf,), {})
        self._batched_grad_grad_test(func, (leaf,), {})

    @allowVmapFallbackUsage
    def test_inplace_manyview(self, device):
        leaf = torch.randn(4, 4, 5, requires_grad=True)

        def func(leaf):
            # Make sure the function is non-trivially twice differentiable
            base = leaf * leaf
            view = base.transpose(0, 2)
            view = view[1]
            view = view.diagonal()
            view = view[::2]
            view.cos_()
            return view

        self._batched_grad_test(func, (leaf,), {})
        self._batched_grad_grad_test(func, (leaf,), {})

    def test_diagonal(self, device):
        x = torch.randn(4, 5, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: x.diagonal(1, 0, 1), (x,))

        x = torch.randn(3, 4, 5, device=device, requires_grad=True)
        self._batched_grad_test(lambda x: x.diagonal(0, -1, -2), (x,))

    @allowVmapFallbackUsage
    def test_unrelated_output(self, device):
        B0 = 3
        x = torch.randn([], requires_grad=True)
        y = torch.randn([], requires_grad=True)
        gy = torch.randn(B0, requires_grad=True)

        def vjp(v):
            res, = torch.autograd.grad(y, x, v, allow_unused=True)
            return torch.zeros_like(x) if res is None else res

        result = vmap(vjp)(gy)
        self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))

    @allowVmapFallbackUsage
    def test_unrelated_output_multiple_grad(self, device):
        B0 = 3
        x = torch.randn([], requires_grad=True)
        y = torch.randn([], requires_grad=True)
        gy = torch.randn(B0, requires_grad=True)

        def vjp(v):
            res, = torch.autograd.grad(y, x, v, allow_unused=True)
            return torch.zeros_like(x) if res is None else res

        _ = vjp(gy[0])
        result = vmap(vjp)(gy)
        self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))


def discover_variants(opinfo):
    aliases = []
    inplace_variants = []

    if opinfo.inplace_variant:
        inplace_variants.append(opinfo.inplace_variant)

    aliases.append(opinfo.op)
    for alias in opinfo.aliases:
        aliases.append(alias.op)
        if alias.inplace_variant:
            inplace_variants.append(alias.inplace_variant)
    return aliases, inplace_variants


class TestVmapOperatorsOpInfo(TestCase):

    def vmap_outplace_test(self, func, args, kwargs, in_dims, check_shape_only=False,
                           postprocess_fn=None):
        for loop_out, vmap_out in compute_quantities_for_vmap_test(func, args, kwargs, in_dims):
            if postprocess_fn is not None:
                loop_out = postprocess_fn(loop_out)
                vmap_out = postprocess_fn(vmap_out)
            if check_shape_only:
                self.assertEqual(vmap_out.shape, loop_out.shape)
                continue
            self.assertEqual(vmap_out, loop_out)

    def vmap_inplace_test(self, func, args, kwargs, in_dims, postprocess_fn=None):
        # NB: This test assumes that the first argument is being modified.
        # This is OK because it's what every other OpInfo-based test assumes,
        # but it is going to need a more robust solution eventually.
        if in_dims[0] is None:
            # Check that we correctly raise an error when vmap is impossible
            # on the in-place operation
            with self.assertRaises(RuntimeError):
                for _ in compute_quantities_for_vmap_test(
                        func, args, kwargs, in_dims, compute_loop_out=False, clone_inputs=True):
                    pass
            return
        for loop_out, vmap_out in compute_quantities_for_vmap_test(
                func, args, kwargs, in_dims, clone_inputs=True):
            if postprocess_fn is not None:
                loop_out = postprocess_fn(loop_out)
                vmap_out = postprocess_fn(vmap_out)
            self.assertEqual(vmap_out, loop_out)

    def opinfo_vmap_test(self, device, dtype, op, check_has_batch_rule,
                         skip_inplace=(), postprocess_fn=None):
        def test():
            # Error inputs check
            if op.error_inputs_func is not None:
                error_inputs = op.error_inputs(device)
                for error_input in error_inputs:
                    sample_input = error_input.sample_input
                    args = (sample_input.input,) + tuple(sample_input.args)
                    kwargs = sample_input.kwargs
                    for args, in_dims, _ in generate_vmap_inputs(args, {}):
                        with self.assertRaises(Exception):
                            vmap(op, in_dims)(*args, **kwargs)

            # Sample inputs check
            sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
            aliases, inplace_aliases = discover_variants(op)
            check_shape_only = op.name in ('empty_like', 'new_empty')
            for sample_input in sample_inputs_itr:
                args = (sample_input.input,) + sample_input.args
                kwargs = sample_input.kwargs
                is_batch_norm_and_training = is_batch_norm_training(op.name, kwargs)
                for args, in_dims, _ in generate_vmap_inputs(
                        args, {}, is_batch_norm_and_training=is_batch_norm_and_training):
                    for func in aliases:
                        self.vmap_outplace_test(func, args, kwargs, in_dims, check_shape_only, postprocess_fn)
                    if op.name in skip_inplace:
                        continue
                    if not is_valid_inplace_sample_input(sample_input, op, op.inplace_variant):
                        continue
                    for func in inplace_aliases:
                        self.vmap_inplace_test(func, args, kwargs, in_dims, postprocess_fn)

        if check_has_batch_rule:
            check_vmap_fallback(self, test, op)
        else:
            test()

    vmap_fail = {
        # -------------------- ALLOWED FAILURES --------------------------------
        # These are things that we either cannot fix or are not actually problems
        xfail('resize_'),
        xfail('resize_as_'),
        xfail('to_sparse'),
        xfail('__getitem__'),  # dynamic mask
        xfail('index_put'),  # dynamic mask
        xfail('nn.functional.dropout'),  # works, can't check against for loop because of randomness inconsistency
        xfail('nn.functional._scaled_dot_product_attention'),  # randomness
        xfail('masked_select'),  # dynamic op
        xfail('nonzero'),  # dynamic op
        xfail('unique', ''),  # dynamic op
        xfail('unique_consecutive', ''),  # dynamic op
        xfail('allclose'),  # returns a boolean
        xfail('uniform'),  # randomness is tested separately
        xfail('rand_like'),  # randomness is tested separately
        xfail('randint_like'),  # randomness is tested separately
        xfail('randn_like'),  # randomness is tested separately
        xfail('bernoulli', ''),  # randomness is tested separately
        xfail('normal', ''),  # randomness is tested separately
        xfail('normal', 'number_mean'),  # randomness is tested separately
        xfail('multinomial', ''),  # randomness
        xfail('nn.functional.embedding', ''),  # we only support some cases
        xfail('nn.functional.rrelu'),  # randomness
        xfail('nn.functional.dropout2d', ''),  # randomness
        xfail('nn.functional.dropout3d', ''),  # randomness
        xfail('nn.functional.feature_alpha_dropout', 'with_train'),  # randomness
        xfail('as_strided'),  # Our test runner can't handle this; manual test exists
        xfail('new_empty_strided'),  # empty tensor data is garbage so it's hard to make comparisons with it
        xfail('nn.functional.fractional_max_pool3d'),  # randomness
        xfail('nn.functional.fractional_max_pool2d'),  # randomness
        xfail('pca_lowrank', ''),  # random operation
        xfail('svd_lowrank', ''),  # random operation
        xfail('linspace', ''),  # test runner can't handle factory functions
        xfail('arange', ''),  # test runner can't handle factory functions
        xfail('logspace', ''),  # test runner can't handle factory functions
        xfail('empty', ''),  # test runner can't handle factory functions
        xfail('ones', ''),  # test runner can't handle factory functions
        xfail('zeros', ''),  # test runner can't handle factory functions
        xfail('eye', ''),  # non-tensor input
        xfail('broadcast_shapes', ''),  # test runner can't handle non-Tensor ops
        xfail('sparse.sampled_addmm'),  # sparse
        xfail('cross'),  # The default value of dim in op is *very* weird. No wonder it doesn't work
        xfail('svd', device_type='cuda'),  # not unique, see test_linalg_svd for manual test
        xfail('linalg.svd', device_type='cuda'),  # not unique, see test_linalg_svd for manual test
        skip('linalg.eigh', ''),  # not unique, see test_linalg_eigh for manual test
        skip('to'),  # RuntimeError: required rank 4 tensor to use channels_last format
        # ----------------------------------------------------------------------

        # ---------------------------- BUGS ------------------------------------
        # entries in here don't work and need to be fixed.
        # Each one of these is a bug
        xfail('clamp_min', ''),  # Exception not raised on error input
        xfail('clamp_max', ''),  # Exception not raised on error input

        xfail('view_as_complex'),  # RuntimeError: Tensor must have a last dimension with stride 1
        xfail('tensor_split'),  # data_ptr
        xfail('histogramdd'),  # expected Tensor as element 0 in argument 0, but got tuple
        xfail('nn.functional.gaussian_nll_loss'),  # data-dependent control flow error
        xfail('nn.functional.embedding_bag'),  # embedding renorm vmap inplace incompatible
        xfail('__rpow__'),  # https://github.com/pytorch/functorch/issues/617
        xfail('column_stack', ''),  # Batching rule not implemented for aten::column_stack
        xfail('narrow'),  # Batching rule not implemented for aten::narrow.Tensor

        # required rank 4 tensor to use channels_last format
        xfail('bfloat16'),
        xfail('bool'),
        xfail('byte'),
        xfail('char'),
        xfail('double'),
        xfail('float'),
        xfail('half'),
        xfail('int'),
        xfail('long'),
        xfail('short'),

        xfail('jiterator_binary', device_type='cuda'),  # NYI: querying is_contiguous inside of vmap
        xfail('jiterator_binary_return_by_ref', device_type='cuda'),  # NYI: querying is_contiguous inside of vmap
        xfail('jiterator_4inputs_with_extra_args', device_type='cuda'),  # NYI: querying is_contiguous inside of vmap
        xfail('equal', ''),  # TypeError: object of type 'bool' has no len(); likely testrunner problem
        xfail('jiterator_unary', device_type='cuda'),  # NYI: querying is_contiguous inside of vmap
        xfail('jiterator_2inputs_2outputs', device_type='cuda'),  # NYI: querying is_contiguous inside of vmap
        # ---------------------------------------------------------------------
    }

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @opsToleranceOverride('TestVmapOperatorsOpInfo', 'test_vmap_exhaustive', (
        tol1('linalg.det',
             {torch.float32: tol(atol=1e-04, rtol=1e-04)}, device_type='cuda'),
        # The following is often flaky, but just on windows.
        # We should investigate if it's actually a problem or not.
        tol1('nn.functional.conv_transpose3d',
             {torch.float32: tol(atol=1e-04, rtol=1e-02)}, device_type='cuda'),
    ))
    @toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
    @skipOps('TestVmapOperatorsOpInfo', 'test_vmap_exhaustive', vmap_fail.union({
        xfail('cat'),
        xfail('native_batch_norm'),
    }))
    def test_vmap_exhaustive(self, device, dtype, op):
        # needs to be fixed
        inplace_failure_list = (
        )
        self.opinfo_vmap_test(device, dtype, op, check_has_batch_rule=False,
                              skip_inplace=inplace_failure_list)

    @ops(op_db + additional_op_db, allowed_dtypes=(torch.float,))
    @opsToleranceOverride('TestVmapOperatorsOpInfo', 'test_op_has_batch_rule', (
        tol1('linalg.det',
             {torch.float32: tol(atol=1e-04, rtol=1e-04)}, device_type='cuda'),
    ))
    @toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04)})
    @skipOps('TestVmapOperatorsOpInfo', 'test_op_has_batch_rule', vmap_fail.union({
        skip('to'),  # RuntimeError: required rank 4 tensor to use channels_last format
        xfail('cat'),
        xfail('complex'),
        xfail('copysign'),
        xfail('native_batch_norm'),
        xfail('histogram'),
        xfail('index_fill'),
        xfail('nansum'),
        xfail('nanmean'),
        xfail('scatter_reduce', 'sum'),
        xfail('scatter_reduce', 'mean'),
        xfail('scatter_reduce', 'amax'),
        xfail('scatter_reduce', 'amin'),
        # `index_put` OpInfo in pytorch/pytorch has
        # masked index as input which is not supported
        xfail('index_put', ''),
        xfail('isin'),
        xfail('lu_unpack'),
        xfail('masked_fill'),
        xfail('masked_scatter'),
        xfail('masked_select'),
        xfail('nanquantile'),
        xfail('narrow_copy'),  # hit the vmap fallback which is currently disabled
        xfail('ormqr'),
        xfail('put'),
        xfail('quantile'),
        xfail('renorm'),
        xfail('resize_as_'),
        xfail('take'),
        xfail('tensor_split'),
        xfail('to_sparse'),
        xfail('vdot'),
        xfail('__getitem__', ''),
        xfail('all'),
        xfail('any'),
        xfail('count_nonzero'),
        xfail('nanmean'),
        xfail('nn.functional.dropout'),  # works, can't check against for loop because of randomness inconsistency
        xfail('nn.functional._scaled_dot_product_attention'),  # randomness
        xfail('resize_'),
        xfail('view_as_complex'),
        xfail('matrix_exp'),
        xfail('bucketize'),
        xfail('fft.ihfft2'),
        xfail('fft.ihfftn'),
        xfail('allclose'),
        xfail('argwhere'),
        xfail('unique_consecutive'),
        xfail('unique'),
        xfail('nn.functional.ctc_loss'),
        xfail('nn.functional.gaussian_nll_loss'),
        xfail('nn.functional.huber_loss'),
        # We can get this to work on CUDA through decomposition,
        # but fails on CPU due to max_pool1d_cpu not having a derivative
        xfail('nn.functional.max_pool1d'),
        xfail('nn.functional.max_pool3d'),
        xfail('histc'),
        xfail('as_strided'),
        xfail('istft'),
        xfail('nonzero'),
        xfail('nn.functional.fractional_max_pool2d'),
        xfail('stft'),
        xfail('isclose'),
        xfail('nn.functional.fractional_max_pool3d'),
        xfail('nn.functional.bilinear'),
        xfail('nn.functional.embedding_bag'),
        xfail('linalg.tensorsolve'),
        xfail('bernoulli', ''),
        xfail('linalg.lu_factor', ''),
        xfail('nn.functional.feature_alpha_dropout', 'with_train'),
        xfail('nn.functional.kl_div', ''),
        xfail('multinomial', ''),
        xfail('column_stack', ''),
        xfail('pca_lowrank', ''),
        xfail('normal', ''),
        xfail('nn.functional.dropout2d', ''),
        xfail('normal', 'number_mean'),
        xfail('svd_lowrank', ''),
        xfail('diagflat', ''),
        xfail('special.log_ndtr'),
        xfail('narrow'),  # Batching rule not implemented for aten::narrow.Tensor
        xfail('nn.functional.triplet_margin_loss', ''),
        xfail('nn.functional.pdist', ''),
        xfail('scatter_reduce', 'sum'),
        xfail('nn.functional.smooth_l1_loss', ''),
        xfail('scatter_reduce', 'amax'),
        xfail('nn.functional.max_unpool1d', 'grad'),
        xfail('nn.functional.multi_margin_loss', ''),
        xfail('scatter_reduce', 'prod'),
        xfail('nn.functional.multilabel_margin_loss', ''),
        xfail('scatter_reduce', 'amin'),
        xfail('nn.functional.max_unpool3d', 'grad'),
        xfail('nn.functional.max_unpool2d', ''),
        xfail('nn.functional.max_unpool2d', 'grad'),
        xfail('nn.functional.margin_ranking_loss', ''),
        xfail('nn.functional.max_unpool1d', ''),
        xfail('nn.functional.soft_margin_loss', ''),
        xfail('scatter_reduce', 'mean'),
        xfail('nn.functional.max_unpool3d', ''),
        xfail('linalg.ldl_solve', '', device_type='cpu'),
        xfail('chalf', ''),
        xfail('arange', ''),
        xfail('clamp_max', ''),
        xfail('jiterator_binary_return_by_ref', device_type='cuda'),
        xfail('special.spherical_bessel_j0'),
        xfail('jiterator_unary', device_type='cuda'),
        xfail('jiterator_2inputs_2outputs', device_type='cuda'),
        xfail('special.airy_ai'),
        xfail('clamp_min', ''),
        xfail('special.bessel_j0'),
        xfail('sparse.sampled_addmm'),
        xfail('special.bessel_y0'),
        xfail('special.chebyshev_polynomial_u'),
        xfail('special.modified_bessel_k1'),
        xfail('segment_reduce', 'offsets'),
        xfail('special.bessel_j1'),
        xfail('logspace', ''),
        xfail('empty', ''),
        xfail('index_reduce', ''),
        xfail('linspace', ''),
        xfail('special.laguerre_polynomial_l'),
        xfail('special.hermite_polynomial_h'),
        xfail('jiterator_binary', device_type='cuda'),
        xfail('special.modified_bessel_i0'),
        xfail('jiterator_4inputs_with_extra_args', device_type='cuda'),
        xfail('linalg.vander', ''),
        xfail('segment_reduce', 'lengths'),
        xfail('lu_solve', ''),
        xfail('special.bessel_y1'),
        xfail('special.hermite_polynomial_he'),
        xfail('special.scaled_modified_bessel_k0'),
        xfail('nn.functional.dropout3d', ''),
        xfail('special.scaled_modified_bessel_k1'),
        xfail('broadcast_shapes', ''),
        xfail('special.modified_bessel_k0'),
        xfail('linalg.vecdot', ''),
        xfail('linalg.ldl_factor', ''),
        xfail('special.modified_bessel_i1'),
        xfail('special.chebyshev_polynomial_t'),
        xfail('as_strided_scatter', ''),
        xfail('equal', ''),
        xfail('linalg.lu', ''),
        skip('linalg.ldl_solve', ''),
    }))
    def test_op_has_batch_rule(self, device, dtype, op):
        # needs to be fixed
        inplace_failures = (
            'abs',
            'acos',
            'acosh',
            'addbmm',
            'addcdiv',
            'addcmul',
            'addmm',
            'addmv',
            'addr',
            'asin',
            'asinh',
            'atan2',
            'atan',
            'atanh',
            'baddbmm',
            'clamp',
            'conj_physical',
            'cumprod',
            'cumsum',
            'div',
            'div',
            'floor_divide',
            'fmod',
            'heaviside',
            'hypot',
            'igamma',
            'igammac',
            'index_add',
            'index_copy',
            'ldexp',
            'lerp',
            'neg',
            'nextafter',
            'polygamma',
            'pow',
            'remainder',
            'scatter_add',
            'scatter',
            'square',
            'sub',
            'tril',
            'triu',
            'trunc',
            'xlogy',
        )
        self.opinfo_vmap_test(device, dtype, op, check_has_batch_rule=True,
                              skip_inplace=inplace_failures)

    def test_linalg_svd(self, device):
        # linalg_svd returns a tuple of three tensors, (U, S, Vh).
        # Given the same input, it may return different tensors,
        # because svd isn't unique. To test that the svd is correct, we multiply
        # U @ diag(S) @ Vh and check that that the output from vmap matches the
        # output from a for-loop.
        def compute_A(out):
            U, S, Vh = out
            m = U.shape[-1]
            n = Vh.shape[-2]
            diag_S = S.new_zeros(*S.shape[:-1], m, n)
            diag_S.diagonal(offset=0, dim1=-2, dim2=-1).copy_(S)
            return U @ diag_S @ Vh

        opinfos = [op for op in op_db if op.name == 'linalg.svd']
        assert len(opinfos) > 0

        for op in opinfos:
            self.opinfo_vmap_test(device, torch.float, op, check_has_batch_rule=True,
                                  postprocess_fn=compute_A)

    def test_linalg_eigh(self, device):
        # linalg_svd returns two tensors, (Q, L).
        # Given the same input, it may return different tensors,
        # because the eig decomposition isn't unique.
        # To test that eigh is correct, we multiply
        # Q @ diag(L) @ Qh and check that that the output from vmap matches the
        # output from a for-loop.
        def compute_A(out):
            L, Q = out
            n = Q.shape[-1]
            diag_L = L.new_zeros(*L.shape[:-1], n, n)
            diag_L.diagonal(offset=0, dim1=-2, dim2=-1).copy_(L)
            Qh = Q.transpose(-2, -1).conj()
            return Q @ diag_L @ Qh

        opinfos = [op for op in op_db if op.name == 'linalg.eigh']
        assert len(opinfos) > 0

        for op in opinfos:
            self.opinfo_vmap_test(device, torch.float, op, check_has_batch_rule=False,
                                  postprocess_fn=compute_A)

    def test_slogdet(self, device):
        # There's no OpInfo for this
        def test():
            B = 2
            x = torch.randn(2, 5, 5, device=device)
            self.vmap_outplace_test(torch.slogdet, (x,), {}, (0,))

        check_vmap_fallback(self, test, torch.slogdet)

    def test_fill__Tensor(self, device):
        # There's no OpInfo for fill_.Tensor, so here's an extra test for it.
        def test():
            B = 2
            args = (torch.randn(B, 3, device=device), torch.randn(B))
            self.vmap_inplace_test(Tensor.fill_, args, {}, (0, 0))

            args = (torch.randn(3, B, device=device), torch.randn(B))
            self.vmap_inplace_test(Tensor.fill_, args, {}, (-1, 0))

            args = (torch.randn(3, device=device), torch.randn(B))
            self.vmap_inplace_test(Tensor.fill_, args, {}, (None, 0))

            args = (torch.randn(3, B, device=device), torch.randn([]))
            self.vmap_inplace_test(Tensor.fill_, args, {}, (1, None))

        check_vmap_fallback(self, test, Tensor.fill_)

    def test_conv_double_backward(self, device):
        images = torch.randn(2, 1, 5, 5, device=device)
        weight = torch.randn(2, 1, 2, 2, device=device)
        bias = torch.randn(2, device=device)
        ggI = torch.randn_like(images)
        ggW = torch.randn_like(weight)
        ggb = torch.randn_like(bias)
        stride = (1, 1)
        padding = (0, 0)
        dilation = (1, 1)
        transposed = False
        output_padding = (0, 0)
        groups = 1
        output_mask = (True, True, True)
        gO = torch.randn_like(F.conv2d(images, weight, bias, stride, padding, dilation, groups))

        args = (
            ggI, ggW, ggb, gO, weight, images, stride, padding, dilation,
            transposed, output_padding, groups, output_mask,
        )
        op = torch.ops.aten._convolution_double_backward

        generator = get_fallback_and_vmap_exhaustive(op, args, {})

        def test():
            for loop_out, batched_out in generator:
                self.assertEqual(loop_out, batched_out, atol=1e-4, rtol=1e-4)

        check_vmap_fallback(self, test, op)

    def test_isnan(self, device):
        test = functools.partial(_vmap_test, check_propagates_grad=False)

        B, N, C, H, W = 2, 3, 24, 5, 7
        op = torch.isnan

        x = torch.randn(B, N, C, H, W)
        x[x > 0] = float('nan')
        test(self, op, (x,), in_dims=(0))

    def test_isinf(self, device):
        test = functools.partial(_vmap_test, check_propagates_grad=False)

        B, N, C, H, W = 2, 3, 24, 5, 7
        op = torch.isinf

        x = torch.randn(B, N, C, H, W)
        x[x > 0] = float('inf')
        test(self, op, (x,), in_dims=(0))

    def test_foo_like(self, device):
        # vfdev-5: Probably, we can remove this line. Flake8 reported as unused
        # test = functools.partial(_vmap_test, check_propagates_grad=False)

        B, N, C, H, W = 2, 3, 24, 5, 7
        for op in [torch.ones_like, torch.zeros_like]:
            x = torch.randn(B, N, C, H, W)
            # todo(chilli): test these better
            # Not testing correctness, just that they run
            vmap(op, in_dims=(0,))(x,)

    def test_flatten(self, device):
        test = functools.partial(_vmap_test, check_propagates_grad=False)

        op = torch.flatten

        x = torch.randn(2, 3, 4, 5)
        test(self, op, (x, 1, 2), in_dims=(0, None, None))

    def test_group_norm(self, device):
        test = functools.partial(_vmap_test, check_propagates_grad=False)

        B, N, C, H, W = 2, 3, 24, 5, 7
        op = F.group_norm

        x = torch.randn(B, N, C, H, W)
        weight = torch.randn(C)
        bias = torch.randn(C)
        test(self, op, (x, 3, weight, bias), in_dims=(0, None, None, None))

        x = torch.randn(B, N, C, H, W)
        weight = torch.randn(B, C)
        bias = torch.randn(B, C)
        test(self, op, (x, 4, weight, bias), in_dims=(0, None, 0, 0))

    def test_index_put(self, device):
        def test(f, t, idx, values):
            base = f(t[0], idx[0], values[0])
            self.assertEqual(vmap(f, in_dims=(0, 0, 0))(t, idx, values)[0], base)
            self.assertEqual(vmap(f, in_dims=(0, None, None))(t, idx[0], values[0])[0], base)
            self.assertEqual(vmap(f, in_dims=(0, None, 0))(t, idx[0], values)[0], base)
            self.assertEqual(vmap(f, in_dims=(0, 0, None))(t, idx, values[0])[0], base)

        def f(x, y, z):
            x[y] = z
            return x

        x = torch.randn(3, 4, 5, device=device)
        y = torch.zeros((3, 2), device=device).long()
        z = torch.randn(3, 2, 5, device=device)
        test(f, x, y, z)

        # indexing innermost dim
        def f(t, idx, values):
            t[:, idx] = values
            return t

        t = torch.zeros((3, 2, 3))
        values = torch.ones((3, 1, 2))
        idx = torch.tensor([[1, 2]]).expand((3, 2))
        test(f, t, idx, values)

        # indexing middle dim
        def f(t, idx, values):
            t[:, idx, :] = values
            return t

        t = torch.zeros((3, 2, 3, 3))
        values = torch.ones((3, 1, 2, 3))
        idx = torch.tensor([[0, 2]]).expand((3, 2))
        test(f, t, idx, values)

        # indexing with slices
        def f(t, values):
            t[:, :2, :] = values
            return t

        base = f(t[0], values[0])
        self.assertEqual(vmap(f, in_dims=(0, 0))(t, values)[0], base)
        self.assertEqual(vmap(f, in_dims=(0, None))(t, values[0])[0], base)

        # index_put_
        tensor = torch.zeros(3, 3, 4)
        value = torch.ones(3, 2)
        idxs = (torch.tensor([[0], [1], [2]]), torch.tensor([[0]]), torch.tensor([1, 2]))
        expected = torch.index_put_(tensor.clone(), idxs, value)

        def f(t, idx, v):
            torch.index_put_(t, idx, v)
            return t

        self.assertEqual(vmap(f, in_dims=(0, (None, None), 0))(tensor, idxs[1:], value), expected)
        self.assertEqual(vmap(f, in_dims=(0, (None, None), None))(tensor, idxs[1:], value[0]), expected)

    @parametrize('training', [True, False])
    @parametrize('track_running_stats', [True, False])
    @parametrize('affine', [True, False])
    def test_batch_norm(self, device, affine, track_running_stats, training):
        if not track_running_stats and not training:
            return

        test = functools.partial(_vmap_test, check_propagates_grad=False)
        BN = torch.nn.BatchNorm2d
        ensemble_size = 10
        hidden_dim = 3

        weights, buffers, _, _, _ = \
            functional_init_with_buffers(BN, [ensemble_size])(
                hidden_dim, affine=affine, track_running_stats=track_running_stats)

        inputs = [torch.randn(ensemble_size, 32, hidden_dim, 16, 16, device=device)]
        in_dims = [0]

        def append(inp, in_dim):
            inputs.append(inp)
            in_dims.append(in_dim)

        if track_running_stats:
            running_mean, running_var, _ = buffers
            append(running_mean.to(device), 0)
            append(running_var.to(device), 0)
        else:
            append(None, None)
            append(None, None)

        if affine:
            weight, bias = weights
            append(weight.to(device), 0)
            append(bias.to(device), 0)
        else:
            append(None, None)
            append(None, None)

        append(training, None)

        def op(inp, running_mean, running_var, weight, bias, training):
            res = F.batch_norm(inp, running_mean, running_var, weight, bias, training)
            if track_running_stats:
                return res, running_mean, running_var
            return res

        test(self, op, tuple(inputs), in_dims=tuple(in_dims))

    def test_torch_return_types_returns(self, device):
        t = torch.randn(3, 2, 2, device=device)
        self.assertTrue(isinstance(vmap(torch.min, (0, None))(t, 0), torch.return_types.min))
        self.assertTrue(isinstance(vmap(torch.max, (0, None))(t, 0), torch.return_types.max))
        self.assertTrue(isinstance(vmap(torch.topk, (0, None, None))(t, 1, 0), torch.return_types.topk))
        self.assertTrue(isinstance(vmap(torch.linalg.eig, (0))(t), torch.return_types.linalg_eig))

    def test_namedtuple_returns(self, device):
        Point = namedtuple('Point', ['x', 'y'])

        def f(x, y):
            return Point(x=x, y=y)

        x = torch.randn(2, 5, device=device)
        y = torch.randn(2, 3, device=device)
        self.assertTrue(isinstance(vmap(f)(x, y), Point))

    def test_inplace_on_view(self, device):
        def func(leaf):
            base = leaf * leaf
            view = base.transpose(0, 1)
            view[2:4, 2:4] *= 2
            view[0:2, 0:2].diagonal().sin_()
            view = view[1:3, 1:3]
            view.cos_()
            return view

        def push_vjp(leaf, gout):
            _, vjp_fn = vjp(func, leaf)
            result, = vjp_fn(gout)
            return result

        leaf = torch.randn(4, 4, device=device)
        gout = torch.randn(2, 2, device=device)
        args = (leaf, gout)

        for args, in_dims, _, in generate_vmap_inputs(args, {}):
            if in_dims[1] is None:
                # triggers some composite compliance problem
                continue
            self.vmap_outplace_test(push_vjp, args, {}, in_dims)

    def test_advanced_indexing(self, device):
        def test(f, args):
            for loop_out, batched_out in get_fallback_and_vmap_exhaustive(f, args, {}):
                self.assertEqual(loop_out, batched_out)

        def f(x, idx):
            return x[:, idx]

        def f2(x, idx):
            return x[idx, :]

        def f3(x, idx):
            return x[:, :, idx]

        inps = (torch.randn(5, 5, 5, device=device),
                torch.randn(5, 5, 5, 5, device=device),
                torch.randn(5, 5, 5, 5, 5, device=device))
        idxes = (torch.tensor([0, 1, 2], device=device),
                 torch.tensor([0, 1, 2], device=device).reshape(3, 1),
                 torch.tensor([0, 1, 2], device=device).reshape(3, 1, 1))
        for (inp, idx) in itertools.product(inps, idxes):
            test(f, (inp, idx))
            test(f2, (inp, idx))
            test(f3, (inp, idx))

    def test_nested_advanced_indexing(self, device):
        e = torch.rand(7, 4, device=device)
        idx = torch.tensor([0, 1], device=device).view(2, 1)

        # simple reference implementation for comparison
        def _fake_vmap(f, in_dims=0, out_dims=0):
            def w(input):
                r = [f(input.select(in_dims, i)) for i in range(input.size(in_dims))]
                return torch.stack(r, out_dims)

            return w

        def with_vmap(_vmap):
            def g(idx_):
                def f(e_):
                    return e_[idx_]

                return _vmap(f, in_dims=1)(e)

            r = _vmap(g)(idx)
            return r

        a = with_vmap(vmap)
        b = with_vmap(_fake_vmap)
        self.assertEqual(a, b)

    @ops(filter(lambda op: "linalg" in op.name, op_db + additional_op_db), allowed_dtypes=(torch.float,))
    @skipOps('TestVmapOperatorsOpInfo', 'test_vmap_linalg_failure_1D_input', {
        xfail('linalg.vector_norm'),  # can accept vector inputs
        xfail('linalg.norm'),  # can accept vector inputs
        xfail('linalg.norm', 'subgradients_at_zero'),  # can accept vector inputs
        skip('linalg.multi_dot'),  # accepts list of tensor inputs, has its own special test
        xfail('linalg.vander'),
        xfail('linalg.vecdot'),
        skip('linalg.ldl_solve', ''),
    })
    def test_vmap_linalg_failure_1D_input(self, device, dtype, op):
        for sample in op.sample_inputs(device, dtype, requires_grad=False):
            if sample.input.dim() != 2 or sample.input.shape[0] == 0:
                continue
            test_input = sample.input[0]  # using the sample input avoids numerical inconsistency issues
            with self.assertRaisesRegex(RuntimeError, "dimension"):
                op(test_input, *sample.args, **sample.kwargs)

            def op_wrapper(inp):
                return op(inp, *sample.args, **sample.kwargs)

            # square inputs are more likely to pass linalg checks
            test_input = test_input.expand(test_input.shape[0], test_input.shape[0])
            with self.assertRaisesRegex(RuntimeError, "dimension"):
                return vmap(op_wrapper)(test_input)

    def test_vmap_multi_dot_failure_1D_input(self):
        # special exception for first and last tensors so making giving 3 items avoids special cases
        inputs = (torch.randn(3, 3), torch.randn(3), torch.randn(3, 3))
        with self.assertRaisesRegex(RuntimeError, "tensor 1 must be 2D but got 1D"):
            torch.linalg.multi_dot(inputs)

        # square inputs are more likely to pass linalg checks
        inputs = tuple(i.expand(i.shape[0], i.shape[0]) for i in inputs)
        with self.assertRaisesRegex(RuntimeError, "tensor 1 must be 2D but got 1D"):
            return vmap(torch.linalg.multi_dot)(inputs)


class TestRandomness(TestCase):
    def _reset_random(self, generator, orig_state, use_generator, seed):
        return generator.set_state(orig_state) if use_generator else torch.manual_seed(seed)

    def _get_image(self, batched_input, batch_size, device):
        if batched_input == "first":
            return torch.ones([batch_size, 3, 3, 14, 14], device=device)
        if batched_input == "last":
            return torch.ones([3, 3, 14, 14, batch_size], device=device)
        assert batched_input == "none"
        return torch.ones([3, 3, 14, 14], device=device)

    def _assert_all_slices_equal(self, tensor):
        expected = tensor[0]
        self.assertTrue((tensor == expected).all())

    def _assert_all_slices_unique(self, tensor):
        B0 = tensor.shape[0]
        slices_equal = vmap(vmap(lambda x, y: (x == y).all(), (0, None)), (None, 0))(tensor, tensor)
        assert slices_equal.shape == (B0, B0)
        slices_equal.diagonal().zero_()
        self.assertEqual(slices_equal, torch.zeros_like(slices_equal))

    def _assert_throws_in_error_mode(self, fn, args, in_dims):
        with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
            vmap(fn, in_dims=in_dims, randomness="error")(*args)

    def _assert_throws_in_different_mode_inplace(self, fn, args, in_dims):
        with self.assertRaisesRegex(RuntimeError, r"different inplace randomness on an unbatched tensor"):
            vmap(fn, in_dims=in_dims, randomness="different")(*args)

    def _assert_throws_in_same_mode_batched(self, fn, args, in_dims):
        with self.assertRaisesRegex(RuntimeError,
                                    r"Vmap does not currently support same randomness with a batched tensor input"):
            vmap(fn, in_dims=in_dims, randomness="same")(*args)

    def _in_dims(self, *batched_strings):

        def get_in_dim(batched_string):
            if batched_string == "first":
                return 0
            if batched_string == "last":
                return -1
            assert batched_string == "none"
            return None

        batched_strings = batched_strings + ("first",)  # for the always batched as first dim dummy argument
        return tuple(get_in_dim(batched_string) for batched_string in batched_strings)

    @parametrize('randomness', ['same', 'different', 'error'])
    @parametrize('use_generator', [True, False])
    def test_factory_ops(self, device, randomness, use_generator):
        generator = torch.Generator(device=device)
        orig_state = generator.get_state()
        kwargs = {'device': device, 'generator': generator} if use_generator else {'device': device}
        ops = [
            lambda _, shape: torch.randn(shape, **kwargs),
            lambda _, shape: torch.rand(shape, **kwargs),
            lambda _, shape: torch.randint(100, shape, **kwargs),
            lambda _, shape: torch.randint(5, 100, shape, **kwargs),
            lambda _, shape: torch.normal(0., 1., shape, **kwargs),
        ]
        B0 = 4
        shape = (3, 3)
        seed = 1234567

        for op in ops:
            passed = torch.randn(B0, device=device)
            if randomness == 'error':
                self._assert_throws_in_error_mode(op, (passed, shape), in_dims=(0, None))
                return

            generator = self._reset_random(generator, orig_state, use_generator, seed)
            vmap_result = vmap(op, in_dims=(0, None), randomness=randomness)(passed, shape)

            generator = self._reset_random(generator, orig_state, use_generator, seed)
            if randomness == "different":
                expected = op(passed, [B0, *shape])
                self._assert_all_slices_unique(vmap_result)
                self.assertEqual(vmap_result, expected)
            else:
                expected = op(passed, shape)
                self._assert_all_slices_equal(vmap_result)
                for i in range(B0):
                    self.assertEqual(vmap_result[i], expected)

    @parametrize('randomness', ['same', 'different', 'error'])
    @parametrize('use_generator', [True, False])
    def test_randperm(self, device, randomness, use_generator):
        # needs a special case because randperm doesn't take a batch size
        B0 = 4
        seed = 1234567
        passed = torch.randn(B0, device=device)

        torch.manual_seed(seed)
        generator = torch.Generator(device=device)
        orig_state = generator.get_state()

        kwargs = {'device': device, 'generator': generator} if use_generator else {'device': device}

        if randomness == 'error':
            with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
                vmap(lambda _: torch.randperm(10, **kwargs), randomness=randomness)(passed)
            return

        vmap_result = vmap(lambda _: torch.randperm(10, **kwargs), randomness=randomness)(passed)
        generator = generator.set_state(orig_state)
        torch.manual_seed(seed)
        if randomness == 'different':
            for i in range(B0):
                expected = torch.randperm(10, **kwargs)
                self.assertEqual(vmap_result[i], expected)
        else:
            expected = torch.randperm(10, **kwargs)
            for i in range(B0):
                self.assertEqual(vmap_result[i], expected)

    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_input', ["first", "last", "none"])
    def test_dropout(self, device, randomness, batched_input):
        def op(t, ignored):
            return torch.nn.functional.dropout(torch.ones_like(t), training=True)

        B0 = 4
        always_batched = torch.randn((B0,))
        passed = self._get_image(batched_input, B0, device)
        in_dims = self._in_dims(batched_input)

        if randomness == 'error':
            with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
                vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
            return

        vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)

        # Check that the randomness is within bounds...
        # ideally this is close to 0.5
        p_estimate = vmap_result.mean() / 2
        self.assertTrue(p_estimate < 0.75)
        self.assertTrue(p_estimate > 0.25)

        if randomness == 'different':
            self._assert_all_slices_unique(vmap_result)
            return

        assert randomness == 'same'
        self._assert_all_slices_equal(vmap_result)

    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_input', ["first", "last", "none"])
    def test_alpha_dropout(self, device, randomness, batched_input):
        def op(t, ignored):
            return torch.nn.functional.alpha_dropout(torch.ones_like(t), training=True)

        B0 = 4
        always_batched = torch.randn((B0,))
        passed = self._get_image(batched_input, B0, device)
        in_dims = self._in_dims(batched_input)

        if randomness == 'error':
            with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
                vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
            return

        # I have no clue how to actually test corectness of alpha dropout because the docs
        # seem wrong: https://github.com/pytorch/pytorch/issues/74004
        vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
        if randomness == 'different':
            self._assert_all_slices_unique(vmap_result)
            return

        assert randomness == 'same'
        self._assert_all_slices_equal(vmap_result)

    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_input', ["first", "last", "none"])
    @parametrize('dim', [2, 3])
    def test_feature_dropout(self, device, randomness, batched_input, dim):
        def op(t, ignored):
            f = torch.nn.functional.dropout2d if dim == 2 else torch.nn.functional.dropout3d
            return f(torch.ones_like(t), training=True)

        B0 = 4
        always_batched = torch.randn((B0,))
        passed = self._get_image(batched_input, B0, device)
        if dim == 3:
            unsqueeze_dim = -2 if batched_input == "last" else -1
            passed = passed.unsqueeze(unsqueeze_dim)
        in_dims = self._in_dims(batched_input)

        if randomness == 'error':
            with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
                vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
            return

        vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)

        # Check that the randomness is within bounds...
        # ideally this is close to 0.5
        p_estimate = vmap_result.mean() / 2
        self.assertTrue(p_estimate < 0.75)
        self.assertTrue(p_estimate > 0.25)

        # Check the "feature" pattern
        dims = [-1, -2] if dim == 2 else [-1, -2, -3]
        planes_numel = 2 * vmap_result.numel() / (vmap_result.shape[0] * vmap_result.shape[1] * vmap_result.shape[2])
        planes = vmap_result.sum(dims)
        result = (planes == 0) ^ (planes == planes_numel)
        self.assertEqual(result, torch.ones_like(result, dtype=torch.bool))

        if randomness == 'different':
            self._assert_all_slices_unique(vmap_result)
            return

        assert randomness == 'same'
        self._assert_all_slices_equal(vmap_result)

    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_input', ["first", "last", "none"])
    def test_feature_alpha_dropout(self, device, randomness, batched_input):
        def op(t, ignored):
            return torch.nn.functional.feature_alpha_dropout(torch.ones_like(t), training=True)

        B0 = 4
        always_batched = torch.randn((B0,))
        passed = self._get_image(batched_input, B0, device)
        unsqueeze_dim = -2 if batched_input == "last" else -1
        passed = passed.unsqueeze(unsqueeze_dim)
        in_dims = self._in_dims(batched_input)

        if randomness == 'error':
            with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
                vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
            return

        vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)

        # I have no clue how to actually test corectness of alpha dropout because the docs
        # seem wrong: https://github.com/pytorch/pytorch/issues/74004

        # Check the "feature" pattern
        dims = [-1, -2, -3]
        planes = vmap_result.sum(dims)
        max_elt = planes.max()
        min_elt = planes.min()
        result = (planes == min_elt) ^ (planes == max_elt)
        self.assertEqual(result, torch.ones_like(result, dtype=torch.bool))

        if randomness == 'different':
            self._assert_all_slices_unique(vmap_result)
            return

        assert randomness == 'same'
        self._assert_all_slices_equal(vmap_result)

    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_input', ["first", "last", "none"])
    def test_like_functions(self, device, randomness, batched_input):
        seed = 1234567
        supported_ops = [
            lambda t, _: torch.randint_like(t, 20),
            lambda t, _: torch.randint_like(t, 0, 20),
            lambda t, _: torch.rand_like(t),
            lambda t, _: torch.randn_like(t),
        ]
        B0 = 4

        for op in supported_ops:
            always_batched = torch.randn(B0)
            passed = self._get_image(batched_input, B0, device)
            in_dims = self._in_dims(batched_input)

            if randomness == 'error':
                with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
                    vmap(op, in_dims=in_dims, randomness=randomness)(passed, always_batched)
                return

            torch.manual_seed(seed)
            vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)

            torch.manual_seed(seed)

            if batched_input == "last":
                passed = passed.movedim(-1, 0)
            if randomness == 'different':
                if batched_input == "none":
                    passed = passed.expand(B0, *passed.shape)
                expected = op(passed, 0)

                self._assert_all_slices_unique(vmap_result)
                self.assertEqual(expected, vmap_result)
                return

            assert randomness == 'same'
            if batched_input != "none":
                passed = passed[0]
            expected = op(passed, 0)
            self._assert_all_slices_equal(vmap_result)
            for i in range(B0):
                self.assertEqual(expected, vmap_result[i])

    @parametrize('use_generator', [True, False])
    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_input', ["first", "last", "none"])
    def test_random_unary_inplace(self, device, use_generator, randomness, batched_input):
        generator = torch.Generator(device=device)
        orig_state = generator.get_state()
        kwargs = {'generator': generator} if use_generator else {}
        ops = [
            lambda t, _: t.random_(**kwargs),
            lambda t, _: t.random_(100, **kwargs),
            lambda t, _: t.random_(-5, 100, **kwargs),
            lambda t, _: t.normal_(**kwargs),
            lambda t, _: t.bernoulli_(**kwargs),
            lambda t, _: t.cauchy_(**kwargs),
            lambda t, _: t.exponential_(**kwargs),
            lambda t, _: t.geometric_(0.5, **kwargs),
            lambda t, _: t.log_normal_(**kwargs),
            lambda t, _: t.uniform_(**kwargs),
        ]
        B0 = 4
        seed = 1234567
        in_dims = self._in_dims(batched_input)

        for op in ops:
            # because of in place updates, clone inputs
            always_batched = torch.randn(B0, device=device)
            passed = self._get_image(batched_input, B0, device)
            passed_expected = passed.clone()

            if randomness == 'error':
                self._assert_throws_in_error_mode(op, (passed, always_batched), in_dims=in_dims)
                return
            if randomness == 'different' and batched_input == "none":
                self._assert_throws_in_different_mode_inplace(op, (passed, always_batched), in_dims=in_dims)
                return

            generator = self._reset_random(generator, orig_state, use_generator, seed)
            vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(passed, always_batched)

            if batched_input == "last":
                passed_expected = passed_expected.movedim(-1, 0)
            generator = self._reset_random(generator, orig_state, use_generator, seed)
            if randomness == "different":
                expected = op(passed_expected, always_batched)
                self._assert_all_slices_unique(vmap_result)
                self.assertEqual(vmap_result, expected)
            else:
                if batched_input != "none":
                    passed_expected = passed_expected[0].clone()  # bug in pytorch, normal_ on views doesn't work
                expected = op(passed_expected, always_batched)
                self._assert_all_slices_equal(vmap_result)
                for i in range(B0):
                    self.assertEqual(vmap_result[i], expected)

    @parametrize('use_generator', [True, False])
    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_input', ["first", "last", "none"])
    @parametrize('batched_probability', ["first", "last", "none"])
    def test_bernoulli_in_place(self, device, use_generator, randomness, batched_input, batched_probability):
        B0 = 4
        seed = 1234567
        generator = torch.Generator(device=device)
        orig_state = generator.get_state()
        kwargs = {'generator': generator} if use_generator else {}
        in_dims = self._in_dims(batched_input, batched_probability)

        def op(t, p, ignored):
            return t.bernoulli_(p, **kwargs)

        # because of in place updates, clone inputs
        always_batched = torch.randn(B0, device=device)
        input = self._get_image(batched_input, B0, device)
        input_expected = input.clone()
        probability = self._get_image(batched_probability, B0, device) - 0.5

        if randomness == 'error':
            self._assert_throws_in_error_mode(op, (input, probability, always_batched), in_dims=in_dims)
            return
        if randomness == 'same' and batched_probability != "none":
            self._assert_throws_in_same_mode_batched(op, (input, probability, always_batched), in_dims=in_dims)
            return
        if batched_input == "none" and batched_probability != "none":
            regex = r"there exists a Tensor `other` in extra_args that has more elements than `self`"
            with self.assertRaisesRegex(RuntimeError, regex):
                vmap(op, in_dims=in_dims, randomness=randomness)(input, probability, always_batched)
            return
        if randomness == 'different' and batched_input == "none":
            self._assert_throws_in_different_mode_inplace(op, (input, probability, always_batched), in_dims=in_dims)
            return

        self._reset_random(generator, orig_state, use_generator, seed)
        vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(input, probability, always_batched)

        self._reset_random(generator, orig_state, use_generator, seed)
        if batched_input == "last":
            input_expected = input_expected.movedim(-1, 0)
        if batched_probability == "last":
            probability = probability.movedim(-1, 0)
        if randomness == "different":
            expected = op(input_expected, probability, always_batched)
            self._assert_all_slices_unique(vmap_result)
            self.assertEqual(vmap_result, expected)
        else:
            if batched_input != "none":
                input_expected = input_expected[0]
            expected = op(input_expected, probability, always_batched)
            self._assert_all_slices_equal(vmap_result)
            for i in range(B0):
                self.assertEqual(vmap_result[i], expected)

    @parametrize('use_generator', [True, False])
    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_input', ["first", "last", "none"])
    @parametrize('batched_other', ["first", "last", "none"])
    def test_random_binary_out_of_place(self, device, use_generator, randomness, batched_input, batched_other):
        generator = torch.Generator(device=device)
        orig_state = generator.get_state()
        kwargs = {'generator': generator} if use_generator else {}
        ops = [
            lambda t, o, _: torch.normal(t, o, **kwargs),
            lambda t, o, _: torch.binomial(t, (o - 0.5), **kwargs),
        ]

        B0 = 4
        seed = 1234567
        in_dims = self._in_dims(batched_input, batched_other)

        for op in ops:
            always_batched = torch.randn(B0, device=device)
            input = self._get_image(batched_input, B0, device)
            other = self._get_image(batched_other, B0, device)

            if randomness == 'error':
                self._assert_throws_in_error_mode(op, (input, other, always_batched), in_dims=in_dims)
                return
            if randomness == 'same' and (batched_input != "none" or batched_other != "none"):
                self._assert_throws_in_same_mode_batched(op, (input, other, always_batched), in_dims=in_dims)
                return

            generator = self._reset_random(generator, orig_state, use_generator, seed)
            vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(input, other, always_batched)

            if batched_input == "last":
                input = input.movedim(-1, 0)
            if batched_other == "last":
                other = other.movedim(-1, 0)

            generator = self._reset_random(generator, orig_state, use_generator, seed)
            if randomness == "different":
                if batched_input == "none":
                    input = input.expand(B0, *input.shape)
                expected = op(input, other, always_batched)
                self._assert_all_slices_unique(vmap_result)
                self.assertEqual(vmap_result, expected)
            else:
                assert batched_input == "none" and batched_other == "none"
                expected = op(input, other, always_batched)
                self._assert_all_slices_equal(vmap_result)
                for i in range(B0):
                    self.assertEqual(vmap_result[i], expected)

    @parametrize('use_generator', [True, False])
    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_input', ["first", "last", "none"])
    def test_random_unary_out_of_place(self, device, use_generator, randomness, batched_input):
        generator = torch.Generator(device=device)
        orig_state = generator.get_state()
        kwargs = {'generator': generator} if use_generator else {}
        ops = [
            lambda t, _: torch.normal(0., torch.abs(t), **kwargs),
            lambda t, _: torch.normal(t, 1., **kwargs),
            lambda t, _: torch.bernoulli(t - 0.5, **kwargs),
            lambda t, _: torch.bernoulli(t, 0.5, **kwargs),
            lambda t, _: torch._standard_gamma(t, **kwargs),
            lambda t, _: torch._sample_dirichlet(t, **kwargs),
            lambda t, _: torch.poisson(t, **kwargs),
        ]

        B0 = 4
        seed = 1234567
        in_dims = self._in_dims(batched_input)

        for op in ops:
            always_batched = torch.randn(B0, device=device)
            passed = self._get_image(batched_input, B0, device)
            if randomness == 'error':
                self._assert_throws_in_error_mode(op, (passed, always_batched), in_dims=in_dims)
                return
            if randomness == 'same' and batched_input != "none":
                self._assert_throws_in_same_mode_batched(op, (passed, always_batched), in_dims=in_dims)
                return

            generator = self._reset_random(generator, orig_state, use_generator, seed)
            vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(passed, always_batched)

            generator = self._reset_random(generator, orig_state, use_generator, seed)
            if randomness == "different":
                if batched_input == "none":
                    passed = passed.expand(B0, *passed.shape)
                if batched_input == "last":
                    passed = passed.movedim(-1, 0)
                expected = op(passed, always_batched)
                self._assert_all_slices_unique(vmap_result)
                self.assertEqual(vmap_result, expected)
            else:
                expected = op(passed, always_batched)
                self._assert_all_slices_equal(vmap_result)
                for i in range(B0):
                    self.assertEqual(vmap_result[i], expected)

    @parametrize('use_generator', [True, False])
    @parametrize('randomness', ['error', 'same', 'different'])
    @parametrize('batched_call', [True, False])
    @parametrize('batched_input', ["first", "last", "none"])
    def test_multinomial(self, device, use_generator, randomness, batched_call, batched_input):
        def flatten_input(input, batch_call, batch_location):
            if batch_call and batch_location != "none":
                final_size = 3  # [B0, B, N]
            elif not batch_call and batch_location == "none":
                final_size = 1  # [N]
            else:
                final_size = 2  # [B0, N] or [B, N]

            start_idx = final_size - 1
            end_idx = -1
            if batch_location == "last":
                start_idx -= 1
                end_idx -= 1   # gets to correct final size because using negative indices

            ret = input.flatten(start_idx, end_idx)
            assert ret.dim() == final_size
            return ret

        def op(input, _):
            return torch.multinomial(input, 10, **kwargs)

        generator = torch.Generator(device=device)
        orig_state = generator.get_state()
        kwargs = {'generator': generator} if use_generator else {}

        B0 = 4
        seed = 1234567
        in_dims = self._in_dims(batched_input)

        always_batched = torch.randn(B0, device=device)
        passed = self._get_image(batched_input, B0, device)
        passed = flatten_input(passed, batched_call, batched_input)
        if randomness == 'error':
            self._assert_throws_in_error_mode(op, (passed, always_batched), in_dims=in_dims)
            return
        if randomness == 'same' and batched_input != "none":
            self._assert_throws_in_same_mode_batched(op, (passed, always_batched), in_dims=in_dims)
            return

        generator = self._reset_random(generator, orig_state, use_generator, seed)
        vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(passed, always_batched)

        generator = self._reset_random(generator, orig_state, use_generator, seed)

        if randomness == "different":
            if batched_input == "none":
                passed = passed.expand(B0, *passed.shape)
            if batched_input == "last":
                passed = passed.movedim(-1, 0)
            orig_passed_size = passed.shape[:2] if batched_call else passed.shape[:1]
            passed = passed.flatten(0, 1) if batched_call else passed
            expected = op(passed, always_batched)
            expected = expected.reshape(*orig_passed_size, 10)
            self._assert_all_slices_unique(vmap_result)
            self.assertEqual(vmap_result, expected)
        else:
            expected = op(passed, always_batched)
            self._assert_all_slices_equal(vmap_result)
            for i in range(B0):
                self.assertEqual(vmap_result[i], expected)

    def test_unsupported_random(self, device):
        x = torch.randn(3, device=device)
        y = x.abs()
        z = x.abs()
        with self.assertRaisesRegex(RuntimeError, "calling out variants"):
            def f(x):
                return torch.randn(3, device=device, out=y)
            vmap(f, randomness='same')(x)
        with self.assertRaisesRegex(RuntimeError, "calling out variants"):
            def f(x0, x1):
                return torch.normal(x, y, out=x)
            vmap(f, randomness='same')(z, z)
        with self.assertRaisesRegex(RuntimeError, "do not yet support"):
            def f(z):
                return torch.rrelu(x)
            vmap(f, randomness='same')(z)

    @parametrize('in_dim', [0, 1, 2])
    @parametrize('out_dim', [0, 1, 2])
    def test_chunk_vmap(self, in_dim, out_dim):

        randomness = "different"

        x = torch.randn(4, 5, 6)

        def f(x):
            y = x.sin() + torch.rand_like(x)
            return y

        for chunks in [1, 2, 3, 4, 7, 10, 16]:
            output = chunk_vmap(
                f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunks=chunks
            )(x)
            self._assert_all_slices_unique(output)


    def test_jacfwd_with_random(self):
        # checks on behavior are above, this just checks that jacfwd respects
        # the randomness param

        x = torch.rand(3, 4)
        with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
            jacfwd(torch.bernoulli)(x)

        # x isn't batched so use bernoulli since it doesn't do inplace randomness
        jacfwd(torch.bernoulli, randomness="same")(x)
        jacfwd(torch.bernoulli, randomness="different")(x)


class TestTransformFailure(TestCase):
    @parametrize('transform', ['vmap', 'grad', 'grad_and_value', 'vjp', 'jvp', 'jacrev', 'jacfwd'])
    def test_fails_with_autograd_function(self, device, transform):
        class Test(torch.autograd.Function):
            @staticmethod
            def forward(_, input):
                return input

            @staticmethod
            def backward(_, grad_input):
                return grad_input

        transform = getattr(functorch, transform)

        def f(x):
            return Test.apply(x)

        if transform == grad or transform == grad_and_value:
            input = torch.tensor(4.)
        else:
            input = torch.randn(5)

        if transform == vjp:
            transform = functools.partial(transform, f)
        elif transform == jvp:
            input = (input,)
            transform = functools.partial(transform, f, input)
        else:
            transform = transform(f)

        with self.assertRaisesRegex(RuntimeError, "autograd.Function"):
            transform(input)

only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestVmapOperatorsOpInfo, globals(), only_for=only_for)

instantiate_device_type_tests(
    TestVmapBatchedGradient,
    globals(),
    only_for=only_for,
)
instantiate_device_type_tests(TestTransformFailure, globals(), only_for=only_for)
instantiate_device_type_tests(TestRandomness, globals(), only_for=only_for)

if __name__ == '__main__':
    run_tests()