1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "modules/detectron/group_spatial_softmax_op.h"
namespace caffe2 {
namespace {
__global__ void GroupSpatialSoftmaxKernel(const int num, const int A, const int W,
const int H, const float* Xdata, float* Pdata, const int num_classes) {
// Loop through labels (N x A x H x W)
CUDA_1D_KERNEL_LOOP(index, num * A * H * W) {
int D = num_classes * A;
int x = index % W;
int y = (index / W) % H;
int a = (index / (W * H)) % A;
int i = index / W / H / A;
// Subtract max on each cell for numerical reasons
float max_val = -FLT_MAX;
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
max_val = max(max_val, Xdata[idx]);
}
// Exponentiate
float expsum = 0.0f;
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
float expx = exp(Xdata[idx] - max_val);
Pdata[idx] = expx;
expsum += expx;
}
// Normalize
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
Pdata[idx] /= expsum;
}
}
}
__global__ void SumProbsKernel(const int N, const int A, const int W,
const int H, const float* Ydata, const float* dYdata,
float* sum_probs_data, const int num_classes) {
CUDA_1D_KERNEL_LOOP(i, N * A * W * H) {
int D = num_classes * A;
int x = i % W;
int y = (i / W) % H;
int a = (i / (W * H)) % A;
int n = i / (W * H * A);
sum_probs_data[i] = 0.0;
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = n * (H * W * D) + c * (H * W) + y * W + x;
sum_probs_data[i] += (Ydata[idx] * dYdata[idx]);
}
}
}
__global__ void SubSumKernel(
const int N, const int A, const int W, const int H,
const float* sum_probs_data, float* dXdata, const int num_classes) {
CUDA_1D_KERNEL_LOOP(i, N * (A * num_classes) * W * H) {
int D = num_classes * A;
int x = i % W;
int y = (i / W) % H;
int a = ((i / (W * H)) % D) / num_classes;
int n = i / W / H / D;
int idx = n * (H * W * A) + a * (H * W) + y * W + x;
dXdata[i] = (dXdata[i] - sum_probs_data[idx]);
}
}
} // namespace
template <>
bool GroupSpatialSoftmaxOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Logits
int N = X.dim32(0);
int D = X.dim32(1);
int H = X.dim32(2);
int W = X.dim32(3);
int A = D / num_classes_;
auto* P = Output(0, X.sizes(), at::dtype<float>()); // Probabilities from softmax
TORCH_DCHECK_EQ(X.ndim(), 4);
const float* Xdata = X.data<float>();
float* Pdata = P->mutable_data<float>();
// Softmax for each x,y location
GroupSpatialSoftmaxKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
N, A, W, H, Xdata, Pdata, num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template<>
bool GroupSpatialSoftmaxGradientOp<float, CUDAContext>::RunOnDevice() {
auto& Y = Input(0); // Probabilities from softmax
auto& dY = Input(1);
TORCH_DCHECK_EQ(Y.ndim(), 4);
int N = Y.dim32(0);
int D = Y.dim32(1);
int H = Y.dim32(2);
int W = Y.dim32(3);
int A = D / num_classes_;
auto* dX = Output(0, Y.sizes(), at::dtype<float>());
if (sum_probs_.size() != N * A * H * W) {
ReinitializeTensor(&sum_probs_, {N * A * H * W}, at::dtype<float>().device(CUDA));
}
const float* Ydata = Y.data<float>();
const float* dYdata = dY.data<float>();
float* dXdata = dX->mutable_data<float>();
float* sum_probs_data = sum_probs_.mutable_data<float>();
math::Set<float, CUDAContext>(
sum_probs_.size(), 0.0f, sum_probs_data, &context_);
// Complete math:
// J_ij = h_i (delta_ij - h_j)
// d x_i = sum_j d h_ij = sum_j J_ij * dy_j
// = sum_j h_i (delta_ij - h_j) * dy_j
// = h_i dy_i - (sum_j h_i h_j dy_j)
// = h_i dy_i - h_i sum_j h_j dy_j
// Step 0: dx = dy
context_.Copy<float, CUDAContext, CUDAContext>(Y.size(), dYdata, dXdata);
// Step 1: s = Sum(dY[j] * Y[j])
SumProbsKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0,
context_.cuda_stream()>>>(
N, A, W, H, Ydata, dYdata, sum_probs_data, num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Step 2: dX[i] = dX[i] - s
SubSumKernel<<<CAFFE_GET_BLOCKS(Y.size()), CAFFE_CUDA_NUM_THREADS, 0,
context_.cuda_stream()>>>(
N, A, W, H, sum_probs_.data<float>(), dXdata, num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Step 3: dX[i] = Y[i] * dX[i]
math::Mul<float, CUDAContext>(Y.size(), dXdata, Ydata, dXdata, &context_);
return true;
}
REGISTER_CUDA_OPERATOR(GroupSpatialSoftmax,
GroupSpatialSoftmaxOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(GroupSpatialSoftmaxGradient,
GroupSpatialSoftmaxGradientOp<float, CUDAContext>);
} // namespace caffe2
|