1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Based on https://github.com/daijifeng001/caffe-rfcn/blob/r-fcn/src/caffe/layers/psroi_pooling_layer.cu
//
// ------------------------------------------------------------------
// R-FCN
// Copyright (c) 2016 Microsoft
// Licensed under The MIT License [see r-fcn/LICENSE for details]
// Written by Yi Li
// ------------------------------------------------------------------
//
// COPYRIGHT
//
// All contributions by the University of California:
// Copyright (c) 2014, 2015, The Regents of the University of California
// (Regents)
// All rights reserved.
//
// All other contributions:
// Copyright (c) 2014, 2015, the respective contributors
// All rights reserved.
//
// Caffe uses a shared copyright model: each contributor holds copyright over
// their contributions to Caffe. The project versioning records all such
// contribution and copyright details. If a contributor wants to further mark
// their specific copyright on a particular contribution, they should indicate
// their copyright solely in the commit message of the change when it is
// committed.
//
// LICENSE
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// CONTRIBUTION AGREEMENT
//
// By contributing to the BVLC/caffe repository through pull-request, comment,
// or otherwise, the contributor releases their content to the
// license and copyright terms herein.
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "modules/detectron/ps_roi_pool_op.h"
namespace caffe2 {
namespace {
template <typename T>
inline __device__ T gpu_atomic_add(const T val, T* address);
template <>
inline __device__
float gpu_atomic_add(const float val, float* address) {
return atomicAdd(address, val);
}
template <typename T>
__global__ void PSRoIPoolForward(
const int nthreads,
const T* bottom_data,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const T* bottom_rois,
const int output_dim,
const int group_size,
T* top_data,
int* mapping_channel) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// The output is in order (n, ctop, ph, pw)
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int ctop = (index / pooled_width / pooled_height) % output_dim;
int n = index / pooled_width / pooled_height / output_dim;
// [start, end) interval for spatial sampling
const T* offset_bottom_rois = bottom_rois + n * 5;
int roi_batch_ind = offset_bottom_rois[0];
T roi_start_w = static_cast<T>(
roundf(offset_bottom_rois[1])) * spatial_scale;
T roi_start_h = static_cast<T>(
roundf(offset_bottom_rois[2])) * spatial_scale;
T roi_end_w = static_cast<T>(
roundf(offset_bottom_rois[3]) + 1.) * spatial_scale;
T roi_end_h = static_cast<T>(
roundf(offset_bottom_rois[4]) + 1.) * spatial_scale;
// Force too small ROIs to be 1x1
T roi_width = c10::cuda::compat::max(roi_end_w - roi_start_w, static_cast<T>(0.1)); // avoid 0
T roi_height = c10::cuda::compat::max(roi_end_h - roi_start_h, static_cast<T>(0.1));
// Compute w and h at bottom
T bin_size_h = roi_height / static_cast<T>(pooled_height);
T bin_size_w = roi_width / static_cast<T>(pooled_width);
// Add roi offsets and clip to input boundaries
int hstart = floor(
static_cast<T>(ph) * bin_size_h + roi_start_h);
int wstart = floor(
static_cast<T>(pw)* bin_size_w + roi_start_w);
int hend = ceil(
static_cast<T>(ph + 1) * bin_size_h + roi_start_h);
int wend = ceil(
static_cast<T>(pw + 1) * bin_size_w + roi_start_w);
hstart = min(max(hstart, 0), height);
hend = min(max(hend, 0), height);
wstart = min(max(wstart, 0),width);
wend = min(max(wend, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
int gw = pw;
int gh = ph;
int c = (ctop * group_size + gh) * group_size + gw;
const T* offset_bottom_data =
bottom_data + (roi_batch_ind * channels + c) * height * width;
T out_sum = 0;
for (int h = hstart; h < hend; ++h){
for (int w = wstart; w < wend; ++w){
int bottom_index = h*width + w;
out_sum += offset_bottom_data[bottom_index];
}
}
T bin_area = (hend - hstart) * (wend - wstart);
top_data[index] = is_empty ? 0. : out_sum / bin_area;
mapping_channel[index] = c;
}
}
template <typename T>
__global__ void PSRoIPoolBackward(
const int nthreads,
const T* top_diff,
const int* mapping_channel,
const int num_rois,
const T spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int output_dim,
T* bottom_diff,
const T* bottom_rois) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// The output is in order (n, ctop, ph, pw)
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int n = index / pooled_width / pooled_height / output_dim;
// [start, end) interval for spatial sampling
const T* offset_bottom_rois = bottom_rois + n * 5;
int roi_batch_ind = offset_bottom_rois[0];
T roi_start_w = static_cast<T>(
roundf(offset_bottom_rois[1])) * spatial_scale;
T roi_start_h = static_cast<T>(
roundf(offset_bottom_rois[2])) * spatial_scale;
T roi_end_w = static_cast<T>(
roundf(offset_bottom_rois[3]) + 1.) * spatial_scale;
T roi_end_h = static_cast<T>(
roundf(offset_bottom_rois[4]) + 1.) * spatial_scale;
// Force too small ROIs to be 1x1
T roi_width = c10::cuda::compat::max(roi_end_w - roi_start_w, static_cast<T>(0.1)); //avoid 0
T roi_height = c10::cuda::compat::max(roi_end_h - roi_start_h, static_cast<T>(0.1));
// Compute w and h at bottom
T bin_size_h = roi_height / static_cast<T>(pooled_height);
T bin_size_w = roi_width / static_cast<T>(pooled_width);
int hstart = floor(
static_cast<T>(ph)* bin_size_h + roi_start_h);
int wstart = floor(
static_cast<T>(pw)* bin_size_w + roi_start_w);
int hend = ceil(
static_cast<T>(ph + 1) * bin_size_h + roi_start_h);
int wend = ceil(
static_cast<T>(pw + 1) * bin_size_w + roi_start_w);
// Add roi offsets and clip to input boundaries
hstart = min(max(hstart, 0), height);
hend = min(max(hend, 0), height);
wstart = min(max(wstart, 0), width);
wend = min(max(wend, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
// Compute c at bottom
int c = mapping_channel[index];
T* offset_bottom_diff =
bottom_diff + (roi_batch_ind * channels + c) * height * width;
T bin_area = (hend - hstart) * (wend - wstart);
T diff_val = is_empty ? 0. : top_diff[index] / bin_area;
for (int h = hstart; h < hend; ++h){
for (int w = wstart; w < wend; ++w){
int bottom_index = h * width + w;
gpu_atomic_add(diff_val, offset_bottom_diff + bottom_index);
}
}
}
}
} // namespace
template<>
bool PSRoIPoolOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Input data to pool
auto& R = Input(1); // RoIs
auto* Y = Output(0, {R.dim32(0), output_dim_, pooled_height_, pooled_width_}, at::dtype<float>()); // PSRoI pooled data
auto* A = Output(1, Y->sizes(), at::dtype<int>()); // mapping_channel
int output_size = Y->numel();
PSRoIPoolForward<float><<<CAFFE_GET_BLOCKS(output_size),
CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
output_size, X.data<float>(), spatial_scale_, X.dim32(1), X.dim32(2),
X.dim32(3), pooled_height_, pooled_width_, R.data<float>(), output_dim_,
group_size_, Y->mutable_data<float>(), A->mutable_data<int>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template<>
bool PSRoIPoolGradientOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Input data to pool
auto& R = Input(1); // RoIs
auto& A = Input(2); // mapping channels
auto& dY = Input(3); // Gradient of net w.r.t. output of "forward" op
// (aka "gradOutput")
auto* dX = Output(0, X.sizes(), at::dtype<float>()); // Gradient of net w.r.t. input to "forward" op
// (aka "gradInput")
// Must zero-out dX before accumulating gradients
math::Set<float, CUDAContext>(
dX->size(), 0.f, dX->mutable_data<float>(), &context_);
PSRoIPoolBackward<float><<<CAFFE_GET_BLOCKS(dY.size()),
CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
dY.size(), dY.data<float>(), A.data<int>(), R.dim32(0), spatial_scale_,
X.dim32(1), X.dim32(2), X.dim32(3), pooled_height_, pooled_width_,
output_dim_, dX->mutable_data<float>(), R.data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(PSRoIPool,
PSRoIPoolOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(PSRoIPoolGradient,
PSRoIPoolGradientOp<float, CUDAContext>);
} // namespace caffe2
|