File: sigmoid_cross_entropy_loss_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (96 lines) | stat: -rw-r--r-- 2,954 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/**
 * Copyright (c) 2016-present, Facebook, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "sigmoid_cross_entropy_loss_op.h"

namespace caffe2 {

REGISTER_CPU_OPERATOR(
    SigmoidCrossEntropyLoss,
    SigmoidCrossEntropyLossOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
    SigmoidCrossEntropyLossGradient,
    SigmoidCrossEntropyLossGradientOp<float, CPUContext>);

OPERATOR_SCHEMA(SigmoidCrossEntropyLoss)
    .NumInputs(2)
    .NumOutputs(1)
    .SetDoc(R"DOC(
Compute sigmoid activations followed by averaged binary cross entropy loss. The
target values may be in {-1, 0, 1}, where -1 indicates that the corresponding
sample should be ignored and {0, 1} correspond to the binary classes 0 and 1. By
default the loss is divided by the number of targets > -1 and then multiplied by
the `scale` op argument. The divisive normalization may be disable by setting
the op argument `normalize` to 0 (the multiplication by `scale` still takes
effect).

This op fuses sigmoid and cross entropy for numerical stability in both forward
and gradient computation.
)DOC")
    .Arg(
        "scale",
        "(float) default 1.0; multiply the loss by this scale factor.")
    .Arg(
        "normalize",
        "(int) default 1; if true, divide the loss by the number of targets > "
        "-1.")
    .Input(
        0,
        "X",
        "Tensor of predicted logits (shape must be at least 1D).")
    .Input(
        1,
        "targets",
        "Tensor of targets of type int and same shape as logits X.")
    .Output(
        0,
        "loss",
        "Scalar loss.");

OPERATOR_SCHEMA(SigmoidCrossEntropyLossGradient)
    .NumInputs(3)
    .NumOutputs(1)
    .Input(
        0,
        "X",
        "See SigmoidCrossEntropyLoss.")
    .Input(
        1,
        "targets",
        "See SigmoidCrossEntropyLoss.")
    .Input(
        2,
        "d_loss",
        "Gradient of forward output 0 (loss).")
    .Output(
        0,
        "dX",
        "Gradient of forward input 0 (X).");

class GetSigmoidCrossEntropyLossGradient : public GradientMakerBase {
  using GradientMakerBase::GradientMakerBase;
  vector<OperatorDef> GetGradientDefs() override {
    return SingleGradientDef(
        "SigmoidCrossEntropyLossGradient",
        "",
        vector<string>{I(0), I(1), GO(0)},
        vector<string>{GI(0)});
  }
};

REGISTER_GRADIENT(SigmoidCrossEntropyLoss, GetSigmoidCrossEntropyLossGradient);

} // namespace caffe2