1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "modules/detectron/sigmoid_focal_loss_op.h"
namespace caffe2 {
namespace {
__global__ void SigmoidFocalLossKernel(
const int N, const int D, const int H, const int W, const float* logits,
const int* targets, const float* weight_pos,
const float gamma, const float alpha,
const int num_classes, float* losses) {
CUDA_1D_KERNEL_LOOP(i, N * D * H * W) {
int x = i % W;
int y = (i / W) % H;
int c = (i / (W * H)) % D; // channel, here D is channel dim in input NxDxHxW
int n = i / (W * H * D); // n in NxDxHxW
int A = D / num_classes; // num_anchors = A
int a = c / num_classes; // current anchor out of A anchors in D = A * num_cls
int d = c % num_classes; // current class
int t = targets[n * (H * W * A) + a * (H * W) + y * W + x]; // target
// check whether the class is true class or not.
// The target classes are in range 1 - 81 and the d is in range 0-80
// because we predict A*80 dim, so for comparison purpose, compare t and (d+1)
float c1 = (t == (d + 1));
float c2 = (t != -1 & t != (d + 1));
float Np = c10::cuda::compat::max(weight_pos[0], static_cast<float>(1.0));
float zn = (1.0 - alpha) / Np;
float zp = alpha / Np;
// p = 1. / 1. + expf(-x)
float p = 1. / (1. + expf(-logits[i]));
// (1 - p)**gamma * log(p) where
float term1 = powf((1. - p), gamma) * logf(c10::cuda::compat::max(p, FLT_MIN));
// p**gamma * log(1 - p)
float term2 =
powf(p, gamma) *
(-1. * logits[i] * (logits[i] >= 0) -
logf(1. + expf(logits[i] - 2. * logits[i] * (logits[i] >= 0))));
losses[i] = 0.0;
losses[i] += -c1 * term1 * zp;
losses[i] += -c2 * term2 * zn;
}
}
__global__ void SigmoidFocalLossGradientKernel(
const int N, const int D, const int H, const int W, const float* logits,
const int* targets, float* dX_data, const float* weight_pos,
const float gamma, const float alpha, const int num_classes,
const float* avg_loss) {
CUDA_1D_KERNEL_LOOP(i, N * D * H * W) {
float a_loss = avg_loss[0];
int x = i % W;
int y = (i / W) % H;
int c = (i / (W * H)) % D;
int n = i / (W * H * D);
int A = D / num_classes; // num_anchors
int a = c / num_classes; // current anchor
int d = c % num_classes; // current class
float Np = c10::cuda::compat::max(weight_pos[0], static_cast<float>(1.0));
float zn = (1.0 - alpha) / Np;
float zp = alpha / Np;
int t = targets[n * (H * W * A) + a * (H * W) + y * W + x];
float c1 = (t == (d + 1));
float c2 = (t != -1 & t != (d + 1));
float p = 1. / (1. + expf(-logits[i]));
// (1-p)**g * (1 - p - g*p*log(p))
float term1 =
powf((1. - p), gamma) *
(1. - p - (p * gamma * logf(c10::cuda::compat::max(p, FLT_MIN))));
// (p**g) * (g*(1-p)*log(1-p) - p)
float term2 =
powf(p, gamma) *
((-1. * logits[i] * (logits[i] >= 0) -
logf(1. + expf(logits[i] - 2. * logits[i] * (logits[i] >= 0)))) *
(1. - p) * gamma - p);
dX_data[i] = 0.0;
dX_data[i] += -c1 * zp * term1;
dX_data[i] += -c2 * zn * term2;
dX_data[i] = dX_data[i] * a_loss;
}
}
} // namespace
template<>
bool SigmoidFocalLossOp<float, CUDAContext>::RunOnDevice() {
// Input logits, for example: N x (A * 80) x H x W in cls-agnostic
auto& X = Input(0);
// Target, for example: N x A x H x W
auto& T = Input(1);
// Number of positive examples: scalar
auto& wp = Input(2);
// output avg Sigmoid focal loss as mentioned in RetinaNet paper
int N = X.dim32(0);
int D = X.dim32(1);
int H = X.dim32(2);
int W = X.dim32(3);
auto* avg_loss = Output(0, vector<int64_t>(), at::dtype<float>());
losses_.ResizeLike(X);
float* avg_loss_data = avg_loss->mutable_data<float>();
SigmoidFocalLossKernel<<<CAFFE_GET_BLOCKS(X.size()),
CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
N, D, H, W, X.data<float>(), T.data<int>(),
wp.data<float>(), gamma_, alpha_, num_classes_,
losses_.mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
math::Sum<float, CUDAContext>(
losses_.size(), losses_.data<float>(), avg_loss_data, &context_);
math::Scale<float, float, CUDAContext>(
1, scale_, avg_loss_data, avg_loss_data, &context_);
return true;
}
template<>
bool SigmoidFocalLossGradientOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0);
auto& T = Input(1);
auto& wp = Input(2);
auto& d_avg_loss = Input(InputSize() - 1);
// get input shape
int N = X.dim32(0);
int D = X.dim32(1);
int H = X.dim32(2);
int W = X.dim32(3);
auto* dX = Output(0, X.sizes(), at::dtype<float>());
SigmoidFocalLossGradientKernel<<<CAFFE_GET_BLOCKS(X.size()),
CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
N, D, H, W, X.data<float>(), T.data<int>(), dX->mutable_data<float>(),
wp.data<float>(), gamma_, alpha_, num_classes_,
d_avg_loss.data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
math::Scale<float, float, CUDAContext>(
dX->size(),
scale_,
dX->data<float>(),
dX->mutable_data<float>(),
&context_);
return true;
}
REGISTER_CUDA_OPERATOR(SigmoidFocalLoss,
SigmoidFocalLossOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(SigmoidFocalLossGradient,
SigmoidFocalLossGradientOp<float, CUDAContext>);
} // namespace caffe2
|