1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "caffe2/core/context_gpu.h"
#include "modules/detectron/smooth_l1_loss_op.h"
namespace caffe2 {
namespace {
template <typename T>
__global__ void SmoothL1Kernel(
const int n, const T* in, T* out, T beta) {
// f(x) = 0.5 * x^2 / beta if |x| < beta
// |x| - 0.5 * beta otherwise
CUDA_1D_KERNEL_LOOP(index, n) {
T val = in[index];
T abs_val = c10::cuda::compat::abs(val);
if (abs_val < beta) {
out[index] = 0.5 * val * val / beta;
} else {
out[index] = abs_val - 0.5 * beta;
}
}
}
template <typename T>
__global__ void SmoothL1GradientKernel(
const int n,
const T* in,
T* out,
const T* d_loss_data,
T norm,
T beta) {
// f'(x) = x / beta if |x| < beta
// = sign(x) otherwise
// We also scale by norm * d_loss in this kernel for convenience
CUDA_1D_KERNEL_LOOP(index, n) {
T val = in[index];
T abs_val = c10::cuda::compat::abs(val);
T d_loss = *d_loss_data;
if (abs_val < beta) {
out[index] = norm * d_loss * val / beta;
} else {
out[index] = norm * d_loss * ((T(0) < val) - (val < T(0)));
}
}
}
} // namespace
template<>
bool SmoothL1LossOp<float, CUDAContext>::RunOnDevice() {
auto& Y_hat = Input(0);
auto& Y = Input(1);
auto& alpha_in = Input(2);
auto& alpha_out = Input(3);
int N = Y.dim32(0);
// Require the same number of elements along axis 0 (batch size), but
// otherwise don't care about the shape (just the number of elements)
CAFFE_ENFORCE_EQ(Y_hat.dim32(0), Y.dim32(0),
"Y_hat and Y must have the same number of elements along axis 0");
CAFFE_ENFORCE_EQ(Y_hat.size(), Y.size(),
"Y_hat and Y must have the same number of elements");
CAFFE_ENFORCE_EQ(Y_hat.size(), alpha_in.size());
CAFFE_ENFORCE_EQ(Y_hat.size(), alpha_out.size());
auto* avg_loss = Output(0, vector<int64_t>(), at::dtype<float>());
buff_.ResizeLike(Y);
// Difference
// d := y_hat - y
math::Sub<float, CUDAContext>(
Y.size(), Y_hat.data<float>(), Y.data<float>(),
buff_.mutable_data<float>(), &context_);
// Element-wise weighted difference (can be used to ignore or reweight
// specific components)
// d := alpha_in * (y_hat - y)
math::Mul<float, CUDAContext>(
buff_.size(), buff_.data<float>(), alpha_in.data<float>(),
buff_.mutable_data<float>(), &context_);
// Element-wise smooth l1 loss
// l := SmoothL1(alpha_in * (y_hat - y))
SmoothL1Kernel<float>
<<<CAFFE_GET_BLOCKS(buff_.size()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
buff_.size(), buff_.data<float>(), buff_.mutable_data<float>(),
beta_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Element-wise weighted smooth l1 loss (can be used to specify a per-element
// loss weight)
// l := alpha_out * SmoothL1(alpha_in * (y_hat - y))
math::Mul<float, CUDAContext>(
buff_.size(), buff_.data<float>(), alpha_out.data<float>(),
buff_.mutable_data<float>(), &context_);
// Sum of all losses
// al := sum_i l_i
float* avg_loss_data = avg_loss->mutable_data<float>();
math::Sum<float, CUDAContext>(
buff_.size(), buff_.data<float>(), avg_loss_data, &context_);
// Average of input batch size
// al := 1/N * al
math::Scale<float, float, CUDAContext>(
1, scale_ / N, avg_loss_data, avg_loss_data, &context_);
return true;
}
template<>
bool SmoothL1LossGradientOp<float, CUDAContext>::RunOnDevice() {
auto& Y_hat = Input(0);
auto& Y = Input(1);
auto& alpha_in = Input(2);
auto& alpha_out = Input(3);
auto& d_avg_loss = Input(4); // gradient of net w.r.t. avg_loss ("gradOuput")
// We intentially don't compute gradients for Y, alpha_{in,out} since they
// are not needed (can change in the future if desired)
int N = Y.dim32(0);
// Require the same number of elements along axis 0 (batch size), but
// otherwise don't care about the shape (just the number of elements)
CAFFE_ENFORCE_EQ(Y_hat.dim32(0), Y.dim32(0),
"Y_hat and Y must have the same number of elements along axis 0");
CAFFE_ENFORCE_EQ(Y_hat.size(), Y.size(),
"Y_hat and Y must have the same number of elements");
CAFFE_ENFORCE_EQ(Y_hat.size(), alpha_in.size());
CAFFE_ENFORCE_EQ(Y_hat.size(), alpha_out.size());
CAFFE_ENFORCE_EQ(d_avg_loss.size(), 1);
auto* d_Y_hat = Output(0, Y_hat.sizes(), at::dtype<float>()); // gradient of net w.r.t. Y_hat ("gradInput")
buff_.ResizeLike(Y);
// Difference
// d := y_hat - y
math::Sub<float, CUDAContext>(
Y.size(), Y_hat.data<float>(), Y.data<float>(),
buff_.mutable_data<float>(), &context_);
// Element-wise weighted difference (can be used to ignore or reweight
// specific components)
// d := alpha_in * (y_hat - y)
math::Mul<float, CUDAContext>(
buff_.size(), buff_.data<float>(), alpha_in.data<float>(),
buff_.mutable_data<float>(), &context_);
// d_Y_hat := d_avg_loss / N * SmoothL1'(alpha_in * (y_hat - y))
SmoothL1GradientKernel<float>
<<<CAFFE_GET_BLOCKS(buff_.size()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
buff_.size(), buff_.data<float>(), d_Y_hat->mutable_data<float>(),
d_avg_loss.data<float>(), scale_ / N, beta_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Element-wise scale by alpha_in and alpha_out
math::Mul<float, CUDAContext>(
d_Y_hat->size(), d_Y_hat->data<float>(), alpha_in.data<float>(),
d_Y_hat->mutable_data<float>(), &context_);
math::Mul<float, CUDAContext>(
d_Y_hat->size(), d_Y_hat->data<float>(), alpha_out.data<float>(),
d_Y_hat->mutable_data<float>(), &context_);
return true;
}
REGISTER_CUDA_OPERATOR(SmoothL1Loss,
SmoothL1LossOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(SmoothL1LossGradient,
SmoothL1LossGradientOp<float, CUDAContext>);
} // namespace caffe2
|