1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "modules/detectron/softmax_focal_loss_op.h"
namespace caffe2 {
namespace {
__global__ void SpatialSoftmaxKernel(const int N, const int A,
const int H, const int W, const float* Xdata, float* Pdata,
const int num_classes) {
CUDA_1D_KERNEL_LOOP(index, N * A * H * W) {
int D = num_classes * A;
int x = index % W;
int y = (index / W) % H;
int a = (index / (W * H)) % A;
int i = index / W / H / A;
// Subtract max on each cell for numerical reasons
float max_val = -FLT_MAX;
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
max_val = max(max_val, Xdata[idx]);
}
// Exponentiate
float expsum = 0.0f;
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
float expx = exp(Xdata[idx] - max_val);
Pdata[idx] = expx;
expsum += expx;
}
// Normalize
for(int c = a * num_classes; c < (a + 1) * num_classes; ++c) {
int idx = i * (H * W * D) + c * (H * W) + y * W + x;
Pdata[idx] /= expsum;
}
}
}
__global__ void SoftmaxFocalLossKernel(
const int N, const int A, const int H, const int W,
const float* Pdata, const int* targets, float* losses,
const float* weight_pos, const float gamma, const float alpha,
const int num_classes) {
CUDA_1D_KERNEL_LOOP(i, N * A * H * W) {
int D = A * num_classes;
int x = i % W;
int y = (i / W) % H;
int a = (i / (W * H)) % A;
int n = i / (W * H * A);
const int label = static_cast<int>(targets[i]);
float Np = c10::cuda::compat::max(weight_pos[0], static_cast<float>(1.0));
float z = (label == 0) * (1 - alpha) / Np +
(label >= 1) * alpha / Np;
losses[i] = 0.0;
if (label >= 0) {
int offset = a * num_classes;
int idx = n * (H * W * D) + (offset + label) * (H * W) + y * W + x;
losses[i] =
-(pow(1.0f - Pdata[idx], gamma) *
log(c10::cuda::compat::max(Pdata[idx], FLT_MIN))) * z;
}
}
}
__global__ void SoftmaxFocalLossGradientWeightKernel(
const int N, const int A, const int H, const int W,
const float* Pdata, const int* targets, float* buff,
const float* weight_pos, const float gamma, const float alpha,
const int num_classes) {
CUDA_1D_KERNEL_LOOP(i, N * A * H * W) {
int D = A * num_classes;
int x = i % W;
int y = (i / W) % H;
int a = (i / (W * H)) % A;
int n = i / (W * H * A);
const int label = static_cast<int>(targets[i]);
float Np = c10::cuda::compat::max(weight_pos[0], static_cast<float>(1.0));
float z = (label == 0) * (1 - alpha) / Np +
(label >= 1) * alpha / Np;
buff[i] = 0.0;
if (label >= 0) {
int offset = a * num_classes;
int idx = n * (H * W * D) + (offset + label) * (H * W) + y * W + x;
float onemp = 1. - Pdata[idx];
float p = Pdata[idx];
buff[i] =
(-pow(onemp, gamma) +
gamma * pow(onemp, gamma - 1) * p * log(c10::cuda::compat::max(p, FLT_MIN))) * z;
}
}
}
__global__ void SoftmaxFocalLossGradientKernel(
const int N, const int D, const int H, const int W,
const float* Pdata, const int* targets, const float* buff,
const float* d_loss_data, float* dX, const int num_classes) {
CUDA_1D_KERNEL_LOOP(i, N * D * H * W) {
int A = D / num_classes;
int x = i % W;
int y = (i / W) % H;
int d = (i / (W * H)) % D;
int a = d / num_classes;
int c = d % num_classes;
int n = i / (W * H * D);
float d_loss = *d_loss_data;
int ind = n * (H * W * A) + a * (H * W) + y * W + x;
const int label = static_cast<int>(targets[ind]);
float c1 = (label >= 0) * 1.0;
float c2 = (label == c) * 1.0;
dX[i] = 0.0;
dX[i] = c1 * d_loss * buff[ind] * (c2 - Pdata[i]);
}
}
} // namespace
template <>
bool SoftmaxFocalLossOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Logits
auto& T = Input(1); // Labels
auto& wp = Input(2); // num of foreground
// average loss as output
// softmax probability, going to be re-used in gradient
int N = X.dim32(0);
int D = X.dim32(1);
int H = X.dim32(2);
int W = X.dim32(3);
int A = D / num_classes_;
ReinitializeTensor(&losses_, {N * A * H * W}, at::dtype<float>().device(CUDA));
auto* P = Output(1, {N * D * H * W}, at::dtype<float>());
auto* avg_loss = Output(0, vector<int64_t>(), at::dtype<float>());
math::Set<float, CUDAContext>(
avg_loss->size(), 0.f, avg_loss->mutable_data<float>(), &context_);
math::Set<float, CUDAContext>(
P->size(), 0.f, P->mutable_data<float>(), &context_);
math::Set<float, CUDAContext>(
losses_.size(), 0.f, losses_.mutable_data<float>(), &context_);
TORCH_DCHECK_EQ(X.ndim(), 4);
const float* Xdata = X.data<float>();
const float* Wdata = wp.data<float>();
// Spatial Softmax Kernel
SpatialSoftmaxKernel
<<<CAFFE_GET_BLOCKS(N * A * H * W), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
N, A, H, W, Xdata, P->mutable_data<float>(), num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Compute loss for each x,y location
const int* Tdata = T.data<int>();
SoftmaxFocalLossKernel
<<<CAFFE_GET_BLOCKS(N * A * H * W), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
N, A, H, W, P->data<float>(), Tdata, losses_.mutable_data<float>(),
Wdata, gamma_, alpha_, num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// sum the losses
float* avg_loss_data = avg_loss->mutable_data<float>();
math::Sum<float, CUDAContext>(
losses_.size(), losses_.data<float>(), avg_loss_data, &context_);
math::Scale<float, float, CUDAContext>(
1, scale_, avg_loss_data, avg_loss_data, &context_);
return true;
}
template<>
bool SoftmaxFocalLossGradientOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Logits
auto& T = Input(1); // Label
auto& wp = Input(2); // num of foreground example
auto& P = Input(3); // Softmax Probability
auto& d_avg_loss = Input(4);
int N = X.dim32(0);
int D = X.dim32(1);
int H = X.dim32(2);
int W = X.dim32(3);
int A = D / num_classes_;
ReinitializeTensor(&buff_, {N * A * H * W}, at::dtype<float>().device(CUDA));
auto* dX = Output(0, X.sizes(), at::dtype<float>()); // gradient wrt logits
const float* Xdata = X.data<float>();
const int* Tdata = T.data<int>();
const float* Pdata = P.data<float>();
const float* Wdata = wp.data<float>();
// Compute the weight for gradients
SoftmaxFocalLossGradientWeightKernel
<<<CAFFE_GET_BLOCKS(N * A * H * W), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
N, A, H, W, Pdata, Tdata, buff_.mutable_data<float>(),
Wdata, gamma_, alpha_, num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Compute the gradient with the weights
const float* Bdata = buff_.data<float>();
SoftmaxFocalLossGradientKernel
<<<CAFFE_GET_BLOCKS(N * D * H * W), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
N, D, H, W, Pdata, Tdata, Bdata, d_avg_loss.data<float>(),
dX->mutable_data<float>(), num_classes_);
C10_CUDA_KERNEL_LAUNCH_CHECK();
math::Scale<float, float, CUDAContext>(
dX->size(),
scale_,
dX->data<float>(),
dX->mutable_data<float>(),
&context_);
return true;
}
REGISTER_CUDA_OPERATOR(SoftmaxFocalLoss,
SoftmaxFocalLossOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(SoftmaxFocalLossGradient,
SoftmaxFocalLossGradientOp<float, CUDAContext>);
} // namespace caffe2
|