1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Adapted from https://github.com/torch/cunn/blob/master/lib/THCUNN/SpatialUpSamplingNearest.cu
*
* Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
* Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
* Copyright (c) 2011-2013 NYU (Clement Farabet)
* Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert,
* Leon Bottou, Iain Melvin, Jason Weston)
* Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
* Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert,
* Samy Bengio, Johnny Mariethoz)
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the names of NEC Laboratories American and IDIAP Research
* Institute nor the names of its contributors may be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "caffe2/core/context_gpu.h"
#include "modules/detectron/upsample_nearest_op.h"
namespace caffe2 {
namespace {
__device__ int translate_idx(int ii, int d1, int d2, int d3, int scale_factor) {
int x, y, z, w;
w = ii % d3;
ii = ii/d3;
z = ii % d2;
ii = ii/d2;
y = ii % d1;
ii = ii/d1;
x = ii;
w = w/scale_factor;
z = z/scale_factor;
d2 /= scale_factor;
d3 /= scale_factor;
return (((x*d1+y)*d2)+z)*d3+w;
}
__device__ int translate_idx_inv(
int ii, int d1, int d2, int d3, int scale_factor, int off_x, int off_y) {
int x, y, z, w;
w = ii % d3;
ii = ii/d3;
z = ii % d2;
ii = ii/d2;
y = ii % d1;
ii = ii/d1;
x = ii;
w = w*scale_factor+off_x;
z = z*scale_factor+off_y;
d2 *= scale_factor;
d3 *= scale_factor;
return (((x*d1+y)*d2)+z)*d3+w;
}
__global__ void upscale(const float *input, float *output, long no_elements,
int scale_factor, int d1, int d2, int d3) {
long ii = threadIdx.x + blockDim.x * blockIdx.x;
ii += threadIdx.y + blockDim.y * (blockDim.x * gridDim.x) * blockIdx.y;
if (ii >= no_elements) return;
int ipidx = translate_idx(ii, d1, d2, d3, scale_factor);
output[ii]=input[ipidx];
}
__global__ void downscale(float *gradInput_data, const float *gradOutput_data,
long no_elements, int scale_factor, int d1, int d2,
int d3) {
long ii = threadIdx.x + blockDim.x * blockIdx.x;
ii += threadIdx.y + blockDim.y * (blockDim.x * gridDim.x) * blockIdx.y;
if (ii >= no_elements) return;
for (int i=0; i < scale_factor; i++){
for(int j=0; j < scale_factor; j++){
int ipidx = translate_idx_inv(ii, d1, d2, d3, scale_factor, i, j);
gradInput_data[ii] += gradOutput_data[ipidx];
}
}
}
} // namespace
template<>
bool UpsampleNearestOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0);
auto* Y = Output(0);
vector<int64_t> out_shape;
for (int i = 0; i < X.ndim(); ++i) {
out_shape.push_back(X.dim32(i));
}
out_shape[X.ndim() - 1] *= scale_;
out_shape[X.ndim() - 2] *= scale_;
Y->Resize(out_shape);
int d1;
int d2;
int d3;
if (X.ndim() == 3) {
d1 = Y->dim32(0);
d2 = Y->dim32(1);
d3 = Y->dim32(2);
} else {
d1 = Y->dim32(1);
d2 = Y->dim32(2);
d3 = Y->dim32(3);
}
long no_elements = Y->size();
const float *input_data = X.data<float>();
float *output_data = Y->mutable_data<float>();
// cuda blocks & threads:
long nthreads = 256;
// Max number of blocks: http://en.wikipedia.org/wiki/CUDA
// 65535 for SM 2.x, 2^32 -1 for >= 3.0
// TODO: When we move to SM 3.5 we should update this
long n_xblocks = min(max((int)ceil((float)no_elements / nthreads), 1), 65535);
long n_yblocks = (long)ceil(
(float)no_elements / (float)(n_xblocks * nthreads));
CAFFE_ENFORCE(n_yblocks <= 65535);
dim3 blocks(n_xblocks, n_yblocks);
dim3 threads(nthreads);
upscale<<<blocks, threads, 0, context_.cuda_stream()>>>(
input_data, output_data, no_elements, scale_, d1, d2, d3);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template<>
bool UpsampleNearestGradientOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0); // Original input to "forward" op
auto& dY = Input(1); // Gradient of net w.r.t. output of "forward" op
// (aka "gradOutput")
auto* dX = Output(0); // Gradient of net w.r.t. input to "forward" op
// (aka "gradInput")
dX->ResizeLike(X);
float *gradInput_data = dX->mutable_data<float>();
const float *gradOutput_data = dY.data<float>();
int d1;
int d2;
int d3;
if (dX->ndim() == 3) {
d1 = dX->dim32(0);
d2 = dX->dim32(1);
d3 = dX->dim32(2);
} else {
d1 = dX->dim32(1);
d2 = dX->dim32(2);
d3 = dX->dim32(3);
}
long no_elements = dX->size();
// cuda blocks & threads:
long nthreads = 256;
// Max number of blocks: http://en.wikipedia.org/wiki/CUDA
// 65535 for SM 2.x, 2^32 -1 for >= 3.0
// TODO: When we move to SM 3.5 we should update this
long n_xblocks = min(max((int)ceil((float)no_elements / nthreads), 1), 65535);
long n_yblocks = (long)ceil(
(float)no_elements / (float)(n_xblocks * nthreads));
CAFFE_ENFORCE(n_yblocks <= 65535);
dim3 blocks(n_xblocks, n_yblocks);
dim3 threads(nthreads);
math::Set<float, CUDAContext>(no_elements, 0.f, gradInput_data, &context_);
downscale<<<blocks, threads, 0, context_.cuda_stream()>>>(
gradInput_data, gradOutput_data, no_elements, scale_, d1, d2, d3);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(UpsampleNearest,
UpsampleNearestOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(UpsampleNearestGradient,
UpsampleNearestGradientOp<float, CUDAContext>);
} // namespace caffe2
|