File: upsample_nearest_op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (43 lines) | stat: -rw-r--r-- 1,273 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

import unittest

import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep
from hypothesis import given, settings


dyndep.InitOpsLibrary("@/caffe2/modules/detectron:detectron_ops")


class TestUpsampleNearestOp(hu.HypothesisTestCase):
    @given(
        N=st.integers(1, 3),
        H=st.integers(10, 300),
        W=st.integers(10, 300),
        scale=st.integers(1, 3),
        **hu.gcs
    )
    @settings(deadline=None, max_examples=20)
    def test_upsample_nearest_op(self, N, H, W, scale, gc, dc):
        C = 32
        X = np.random.randn(N, C, H, W).astype(np.float32)
        op = core.CreateOperator("UpsampleNearest", ["X"], ["Y"], scale=scale)

        def ref(X):
            outH = H * scale
            outW = W * scale
            outH_idxs, outW_idxs = np.meshgrid(
                np.arange(outH), np.arange(outW), indexing="ij"
            )
            inH_idxs = (outH_idxs / scale).astype(np.int32)
            inW_idxs = (outW_idxs / scale).astype(np.int32)
            Y = X[:, :, inH_idxs, inW_idxs]
            return [Y]

        self.assertReferenceChecks(device_option=gc, op=op, inputs=[X], reference=ref)


if __name__ == "__main__":
    unittest.main()